
CS 152 Computer Architecture and Engineering 

CS 252A Graduate Computer Architecture 

 

Midterm #2 

SOLUTIONS 

April 14, 2021 

Professor Krste Asanović 

 

Name:______________________ 

SID:______________________ 

I am taking CS152 / CS252A 

(circle one) 

 

80 Minutes, 4 Questions 

 
Notes: 

• Not all questions are of equal difficulty, so look over the entire exam! 

• Please carefully state any assumptions you make. 

• Please write your name on every page in the exam. 

• Do not discuss the exam with other students who haven’t taken the exam. 

• If you have inadvertently been exposed to an exam prior to taking it, you 

must tell the instructor or TA. 

• You will receive no credit for selecting multiple-choice answers without 

giving explanations if the instructions ask you to explain your choice. 
 

Question CS152 Point Value CS252A Point Value 

1 20 20 

2 20 20 

3 16 16 

4 18 28 

TOTAL 74 84 

 



Q1-1 

 

 

Problem 1: Out-of-order Execution (20 Points) (CS152) 

We execute the following function on an out-of-order core with a unified physical register file. 
 

void scale_6(int* a0, int a1) { 
  for (int i = 0; i < 6; i++) { 
    a0[i] = a0[i] * a1; 
  } 
} 
 

addi t1, a0, 0x18 
loop: lw t0, 0(a0) 
 mul t0, t0, a1 
 sw t0, 0(a0) 
 addi a0, a0, 0x4 
 bnez  a0, t1, loop 
 ret 

 

1.A (10 points) OOO Structures 

Fill out the contents of the reorder-buffer, freelist, and map table as the decode unit would until 

the ROB is full. Additionally, indicate the final values for the ROB head and tail pointers. The 

first instruction has been filled out for you. Assume no instruction will complete execution. 
 

Note: The instruction column of the ROB is optional and will not be graded. Space is provided to 

assist you in bookkeeping. 

 

FIFO Free List 

p11 p12 p13 p14 p15 p16 p17 p18 p19        

 

Map Table 

a0 p0 p14       

a1 p1        

t0 p2 p12 p13 p15 p16    

t1 p3 p11       

 

ROB 

IDX Instruction PRd LPRd 

0 bnez   

1 lw t0 p15 p13 

2 mul t0 p16 p15 

3 addi t1 p11 p3 

4 lw t0 p12 p2 

5 mul t0  p13 p12 

6 sw   

7 addi a0 p14 p0 

 

Final ROB Head: 3 Final ROB Tail: 2 
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Problem 1: (20 Points) Out-of-order Execution (CS152) 

We execute the following function on an out-of-order core with a unified physical register file. 
 

int acc_6(int* a0) { 
  int a1 = 0; 
  for (int i = 0; i < 6; i++) { 
    a1 += a0[i]; 
  } 
  return a1; 
} 

addi  t1, a0, 0x18
 addi  a1, zero, 0x0 
loop: lw    t0, 0(a0) 
 add   a1, a1, t0 
 addi  a0, a0, 0x4 
 bnez  a0, t1, loop 
 mv    a0, a1 
 ret 

 

1.A (10 points) OOO Structures 

Fill out the contents of the reorder-buffer, freelist, and map table as the decode unit would until 

the ROB is full. Additionally, indicate the final values for the ROB head and tail pointers. The 

first instruction has been filled out for you. Assume no instruction will complete execution. 
 

Note: The instruction column of the ROB is optional and will not be graded. Space is provided to 

assist you in bookkeeping. 
 

FIFO Free List 

p11 p12 p13 p14 p15 p16 p17 p18 p19        

 

Map Table 

a0 p0 p15       

a1 p1 p12 p14 p17     

t0 p2 p13 p16      

t1 p3 p11       

 

ROB 

IDX Instruction PRd LPRd 

0 bnez   

1 lw t0 p16 p13 

2 add a1 p17 p14 

3 addi t1 p11 p3 

4 addi a1 p12 p1 

5 lw t0 p13 p2 

6 add a1 p14 p12 

7 addi a0 p15 p0 

 

Final ROB Head: 3 Final ROB Tail: 2 
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1.B (4 points) Precise exceptions 

Note: For this problem, you should not update the structures in 1A. 

After the ROB becomes full, there is a protection fault on the first load in the instruction 

sequence. The ROB recovers architectural state using the iterative exception recovery procedure 

discussed in class. 

 

How many cycles does it take to recover architectural state? 

 

scale_6: 7 cycles, 1 for each instruction between ROB tail and the load, including the load 

acc_6: 6 cycles 

 

Which registers are returned to the free list during this process? 

 

p12-p16, inclusive in scale_6 

p13-p17, inclusive in acc_6 

 

1.C (3 points) Checkpointing 

To provide fast pipeline restarts after branch mispredictions, some structures and values must be 

checkpointed when branches are dispatched. Circle which of the following structures must be 

checkpointed for fast pipeline restarts. No explanation is necessary. Assume all buffers are 

implemented as circular buffers, with head and tail pointers. 

 

• ROB head pointer 

• ROB tail pointer 

• Physical register contents 

• Physical register present bits 

• Issue queue contents 

• Physical register free list 

• Architectural register map table 

• Speculative store buffer head pointer 

• Speculative store buffer tail pointer

 

1.D (3 points) Branch prediction 

You build a PC-indexed BHT to improve prediction accuracy of the branch in this loop. What is 

the prediction accuracy for the conditional branch after this function is called many times when 

using 1-bit counters?  

 

1-bit counters will always mispredict both the entry and the exit, while the 2-bit saturating 

counter will only mispredict the exit. 

 

Prediction accuracy with 1-bit counters = _________4/6__________ 

 

What is the prediction accuracy for the conditional branch after this function is called many 

times when using 2-bit saturating counters? 

 

Prediction accuracy with 2-bit counters = ________5/6___________  



Q1-4 

 

 

Problem 1: (20 Points) Out-of-order Execution (CS252A) 

 

You consider implementing another pointer in the ROB, the “Point-of-no return” (PNR) pointer. 

The PNR pointer sits between the ROB head, and tail. Instructions between the PNR and the 

ROB head are guaranteed to eventually commit. In the diagram below, the highlighted entries 

indicate valid entries in the ROB, while the bolded instructions indicate those that are guaranteed 

to eventually commit (will never be squashed). 

 

ROB 

 

0x800 

0x804 

0x808 

0x80c 

0x810 

0x814 

0x818 

 

 

 

1.A (5 points) Point-of-no-return policy 

Describe a policy for incrementing the PNR pointer, that maximizes the number of instructions 

between the PNR and the ROB head. 

 

Increment the PNR pointer if any of the following is true for the instruction the PNR is pointing 

to. 

1. The instruction may never cause an exception or PC redirection 

2. The instruction is a branch, and has been completed (resolved) 

3. The instruction is a memory instruction, has been completed, and will never cause an 

address disambiguation misspeculation 

 

 

 

 

 

 

 

1.B (5 points) Point-of-no-return safety 

You consider freeing stale physical registers for instructions between the PNR and the ROB 

head, ahead of when the instructions commit. Under what conditions is this optimization safe to 

apply? 

 

This is safe if all other instructions between the PNR and the ROB head which write to or read 

from the physical register have either completed (for writes) or read their operands (for reads). 

Head 

Tail 

PNR 
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Note: Following questions are unrelated to 1.A/1.B 

 

1.C (5 points) MOV optimization 

The “mv rd, rs1” instruction copies the contents of rs1 into the register rd. In a core with 

register renaming, this instruction can be implemented by allowing multiple architectural 

registers to map to the same physical register, avoiding an unnecessary copy. How does this 

optimization impact recovery from mispredictions? 

 

The challenge is maintaining a free list. Since multiple architectural registers might point to the 

same physical register, we can no longer free physical registers using the simple scheme 

whenever we remap an architectural register, either at commit, or during misprediction recovery. 

 

Some form of reference-counting would be necessary. A physical register can only be freed 

when no inflight instructions reference it. 

 

 

 

 

 

 

 

 

1.D (5 points) History registers 

You observe that a long global history register captures the dynamic execution path of the 

program, and that long global history registers are positively correlated with branch prediction 

performance. You develop an alternative formulation of a history register, called an “infinite 

path history”. In your proposed formulation, the “infinite path history” register is a 32 bit register 

that is repeatedly hashed with the target PC of taken branches or jumps, to capture infinite 

history from dynamic execution. 

 

 PHIST <= hash(PHIST, target_pc) 

 

Discuss the merits of this approach. 

 

The key is that temporal and spatial correlation is finite, as all programs are finite. In an infinite 

history register, noise from information arbitrarily far into the past would mask any spatial or 

temporal correlations carried in the history register. 
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Problem 2: Multithreading (20 points) 

 

2.A (12 points) True/False 

For each statement below, indicate whether that statement is true or false and briefly explain 

your reasoning. 

 

Adding multithreading to a single-issue out-of-order core will in general yield a greater relative 

performance improvement than adding multithreading to a similar single-issue in-order core with 

an identical memory hierarchy. 

 

False. An out-of-order core can already reduce vertical waste by exploiting more ILP. An in-

order core will stall much more frequently than an out-of-order core, so there is more potential 

for performance improvement by hiding stalls using multithreading. 

 

 

 

 

 

 

A multithreaded processor does not benefit from branch prediction with a sufficiently large 

number of threads. 

 

True. With a sufficiently large number of threads, branch resolution latency will be completely 

hidden since the core will be busy executing instructions from other threads. 

 

 

 

 

 

The ISA must contain special multithreading instructions to support multithreading. 

 

False. From the perspective of the ISA, a multithreaded processor is architecturally identical to a 

multicore system. No special instructions are necessary, as switching between threads is handled 

at the hardware level. 
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2.A (8 points) Performance 

Consider execution of the following code on a single-issue in-order processor.  Loads have 50-

cycle latency and are fully pipelined. Adds have 4-cycle latency and are fully pipelined.  Assume 

perfect branch prediction and that branches execute in one cycle. 

 

(Alternate version: 70-cycle load latency, 5-cycle add latency) 

 
// pointer chasing 

loop: addi a1, a1, -0x1 

      lw a0, 0(a0) 

      bnez a1, loop 

 

We add multithreading to this processor. 

 

Fixed Switching: How many threads are needed to avoid stalls if threads are switched every 

cycle in a fixed round-robin schedule?  Show your work. 

 

The longest stall is the load-to-load dependency between consecutive iterations. If thread 0 

executes a lw on cycle 0, the next lw will happen on cycle 3N, where N is the number of 

threads. 

 

50 > 3N 

The number of threads is at least 17. 

 

 

In the alternate version, the equation is 70 > 3N, so number of threads is at least 24. 

 

 

 

 

Data-dependent Switching: How many threads are needed to avoid stalls if threads are 

switched only when an instruction cannot issue due to a data dependency? 

 

 

lw → bnez → addi can be issued without stalls from a single thread. Then there are 50 - 3 

cycles of latency to hide before the next lw can execute again. 

 

ceil((50 - 3) / 3) + 1 = 17 threads, again 

 

In the alternate version, the equation is ceil((70 - 3) / 3) + 1 = 24 threads. 
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Problem 3: VLIW (16 points) 

 

In this problem, we will optimize the following code sequence, which performs a scatter 

operation with scaling, for a VLIW architecture. 

loop: 

flw  ft0, 0(a0)        # x = src[i] 

lw   t0, 0(a1)         # p = idx[i] 

addi a0, a0, 0x4       # bump idx 
addi a1, a1, 0x4       # bump src 

addi a2, a2, -0x1      # decrement n 

fmul ft1, ft0, fa0     # scale x 
fsw  ft1, (t0)         # *p = x 

bnez a2, loop 

 

● The source, index, and destination arrays do not overlap in memory.  (Assume there are 

no memory-memory dependencies.) 

● The number of iterations (initial value of a2) is greater than 0. 

● Assume that no exceptions arise during execution. 

The code is executed on an in-order VLIW machine with four execution units.  All execution 

units are fully pipelined and latch their operands at issue. 

 

● Two integer ALUs, 1-cycle latency, also used for branches 

● One load/store unit, 3-cycle latency for loads (Alternate version: 2-cycle latency) 

● One floating-point unit, 2-cycle latency (Alternate version: 3-cycle latency) 

Instructions are statically scheduled with no interlocks; all latencies are exposed in the 

ISA.  All register operands are read before any writes from the same instruction take effect (i.e., 

no WAR hazards between operations within a single VLIW instruction). 

Execution units write to the register file at the end of their last pipeline stage, and the results 

become visible at the beginning of the following cycle.  There is no bypassing.  Old values can 

be read from registers until they have been overwritten.  (You may leverage this to more 

efficiently schedule VLIW code.) 

  



Q3-2 

 

The unoptimized scheduling of the above assembly code is shown in the following table. 

Label ALU0 ALU1 MEM FPU 
loop: addi a0, a0, 0x4  flw ft0, 0(a0)  

 addi a1, a1, 0x4  lw t0, 0(a1)  

 addi a2, a2, -0x1    

    fmul ft1,ft0,fa0 

     

 bnez a2, loop  fsw ft1, 0(t0)  
 

3.A (12 points) Software Pipelining 

Schedule operations with VLIW instructions using only software pipelining (no loop 

unrolling).  Include the prologue and epilogue to initiate and drain the software pipeline.  Try to 

optimize for efficiency and minimize the number of cycles, but prioritize correctness.  Your code 

should behave correctly for any a2 > 0. 

You do not have to write out the full instructions unless they differ from the original – just the 

opcode and the destination register are sufficient.  Entries for NOPs can be left blank. 

Label ALU0 ALU1 MEM FPU 

 addi a0, a0, 0x4 addi a2, a2, -0x1 flw ft0, 0(a0)  

 addi a1, a1, 0x4  lw t0, 0(a0)  

 beqz a2, end    

loop: addi a0, a0, 0x4 addi a2, a2, -0x1 flw ft0, 0(a0) fmul ft1,ft0,fa0 

 addi a1, a1, 0x4  lw t0, 0(a0)  

 bnez a2, loop  fsw ft1, 0(t0)  

    fmul ft1,ft0,fa0 

     

   fsw ft1, 0(t0)  

 

Alternate version: 

Label ALU0 ALU1 MEM FPU 

 addi a0, a0, 0x4 addi a2, a2, -0x1 flw ft0, 0(a0)  

 addi a1, a1, 0x4  lw t0, 0(a0)  

 beqz a2, end   fmul ft1,ft0,fa0 

loop: addi a0, a0, 0x4 addi a2, a2, -0x1 flw ft0, 0(a0)  

 addi a1, a1, 0x4  lw t0, 0(a0)  

 bnez a2, loop  fsw ft1, 0(t0) fmul ft1,ft0,fa0 

     

     

   fsw ft1, 0(t0)  
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3.B (4 points) Loop Unrolling 

Could this code achieve higher throughput by combining loop unrolling with software 

pipelining?  If so, briefly explain the approach of applying loop unrolling to the software-

pipelined code.  If not, explain your reasoning. 

 

With the correct solution to 3.A, the answer is no. Since the MEM unit is fully utilized with only 

software pipelining, no additional utilization can be gained by further unrolling the code. 

 

Alternatively, if the solution to 3.A did not fully utilize the MEM unit (the software pipelining 

was sub-optimal), then the answer is yes. Unrolling would allow the code to more densely pack 

instructions in a single inner loop iteration until either the MEM or the FPU unit is fully utilized. 
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Problem 4: Vectors (18 points CS152, 28 points CS252A) 

 

4.A (12 points) Vectorization 

Vectorize the following C function.  Write your code in the table.  You may not need to use all 

the spaces.  Refer to Appendix A for an abbreviated RISC-V vector instruction listing. 

• Fill in the blanks for the vsetvli instruction. 

• The vector unit is configured with SEW=32 for 32-bit elements. 

• Note that LMUL=1, so you may use any of the 32 standard vector registers.  You may 

freely use any temporary registers. 

• Assume there is no aliasing between the a, b, and idx arrays. 

// Argument registers:             a0          a1          a2           a3 
void leaky_activation(unsigned int n, int32_t *a, int32_t *b, uint32_t *idx, 
//                            a4              a5 
                      int32_t scale, uint32_t dilation) { 
    for (unsigned int i = 0; i < n; i++) { 
        if (a[idx[i]] < 0) { 
            b[dilation*i] = scale * a[idx[i]]; 
        } 
    } 
} 

 

Label Instruction Comment (optional) 

 // Prologue (if any)  

 slli a5, a5, 2 set stride in bytes 

loop: vsetvli t0, a0, e32, m1, ta, mu  

 // Do vector operations  

 vle32.v v1, (a3) load idx[i] 

 vsll.vi v1, v1, 2 convert to byte offsets 

 vluxei32.v v2, (a1), v1 load a[idx[i]] 

 vmslt.vx v0, v2, x0 set mask (a[idx[i]] < 0) 

 vmul.vx v2, v2, a4, v0.t scale * a[idx[i]] 

 vsse32.v v2, (a2), a5, v0.t store b[dilation*i] 

 // Update pointers  

 sub a0, a0, t0 decrement n 

 mul t1, t0, a5 compute vl*dilation in bytes 

 slli t0, t0, 2 convert vl to bytes 

 add a3, a3, t0 bump pointer to idx 

 add a2, a2, t1 bump pointer to b 

 // Branch to loop  

 bnez a0, loop  

end: ret  
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Alternate version: 

// Argument registers:             a0          a1         a2           a3 
void leaky_activation(unsigned int n, int32_t *a, int32_t *b, uint32_t *idx, 
//                            a4              a5 
                      int32_t scale, uint32_t dilation) { 
    for (unsigned int i = 0; i < n; i++) { 
        if (a[dilation*i] < 0) { 
            b[idx[i]] = scale * a[dilation*i]; 
        } 
    } 
} 

 

Label Instruction Comment (optional) 

 // Prologue (if any)  

 slli a5, a5, 2 set stride in bytes 

loop: vsetvli  t0, a0, e32, m1, ta, mu  

 // Do vector operations  

 vlse32.v v1, (a1), a5 load a[dilation*i] 

 vmslt.vx v0, v1, x0 set mask (a[dilation*i] < 0) 

 vmul.vx v1, v1, a4, v0.t scale * a[dilation*i] 

 vle32.v v2, (a3), v0.t load idx[i] 

 vsll.vi v2, v2, 2, v0.t convert to byte offsets 

 vsoxei32.v v1, (a2), v2, v0.t store b[idx[i]] 

 // Update pointers  

 sub a0, a0, t0 decrement n 

 mul t1, t0, a5 compute vl*dilation in bytes 

 slli t0, t0, 2 convert vl to bytes 

 add a3, a3, t0 bump pointer to idx 

 add a1, a1, t1 bump pointer to a 

 // Branch to loop  

 bnez a0, loop  

end: ret  

 

To preserve the same exception behavior as the original scalar code, all memory operations 

within the conditional block should be predicated to ensure that inactive elements do not fault. 
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4.B (6 points) Iron Law 

For each of the following modifications to a baseline vector machine, indicate whether it has an 

increasing, decreasing, negligible, or ambiguous effect on CPI and on overall runtime (time 

per program) for a trivially vectorizable program, such as vector-vector add. 

Briefly explain your reasoning in one or two sentences. 

 Cycles / Instruction Time / Program 

Increase maximum hardware 

vector length (MAXVL) 

Increase – Each vector 

instruction operates on more 

elements and therefore takes 

more cycles to execute, 

assuming that the application 

vector length of the program 

is greater than the original 

hardware vector length. 

Decrease – As each vector 

instruction performs more 

work, fewer dynamic 

instructions and stripmine 

iterations are executed, 

reducing loop overhead and 

instruction cache pressure.  

Longer vectors mitigate dead 

time.  If MAXVL is increased 

by repartitioning the vector 

register file (i.e., LMUL), the 

hardware implementation 

does not change and cycle 

time is unaffected. 

Increase number of lanes 

Decrease – More elements 

can be processed in parallel 

each cycle, reducing the 

number of cycles each vector 

instruction takes to execute. 

Decrease – CPI decreases 

while the number of 

instructions executed remains 

constant.  Since the lanes are 

largely independent 

structures, the critical path is 

normally impacted to a lesser 

degree. 
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4.C (5 points) Precise Exceptions (CS252A) 

Describe the difficulties of implementing precise exceptions in a vector machine that allows 

multiple vector instructions to overlap in execution (e.g., chaining).  Propose a solution that 

avoids significantly impacting performance. 

The danger is that the first elements of a younger vector instruction may have already written 

back or stored to memory when one of the last elements of an older vector instruction causes an 

exception, which creates an imprecise architectural state. 

Executing vector instructions strictly sequentially would avoid this but may reduce performance 

unacceptably.  One solution is to only allow subsequent vector instructions to issue once all 

preceding instructions are known not to fault.  For memory-related exceptions, the addresses for 

unit-stride loads and stores can be checked quickly in batches with a few TLB lookups; however, 

the address checks can be prolonged for indexed memory operations, as they often must be 

performed individually.  Another solution is to rename the vector registers and buffer 

uncommitted stores in a store queue, so architectural state can be rolled back after an exception. 

 

4.D (5 points) Decoupling (CS252A) 

A decoupled vector machine splits the vector unit into two components connected by queues: a 

vector execution unit (VXU) that performs data computation and a vector memory unit (VMU) 

that handles address generation and memory accesses. 

After being decoded, vector arithmetic instructions are sent to the VXU instruction queue and are 

issued in program order to the functional units when their operands are available. 

Vector memory instructions are split into two parallel operations.  For vector loads, the first 

operation is sent to the VMU instruction queue and generates a stream of memory requests that 

fill an internal vector load buffer.  The second operation is sent to the VXU instruction queue and 

moves data from the vector load buffer to the vector register file.  For vector stores, the first 

operation generates a stream of memory addresses to a vector store buffer where they wait for 

vector store data.  The second operation is sent to the VXU instruction queue and reads out 

vector register data to the vector store data queue.  The vector store buffer sends store requests to 

memory once both address and data are present for an entry. 

What are the advantages of vector decoupling when executing a stripmine loop over many 

iterations? 

As a form of access/execute decoupling, this scheme enables some degree of dynamic scheduling 

to help tolerate memory latency.  Vector arithmetic instructions stalled on data dependencies do 

not block the issue stage.  This frees the processor to run ahead and fetch vector memory 

instructions in upcoming stripmine iterations, allowing the vector unit to generate addresses and 

initiate memory requests earlier before older vector arithmetic instructions have begun execution. 


