
Q1-1

Problem 1: Out-of-order Execution (20 Points)

We execute the following function on an out-of-order core with a unified physical register file.

void scale_6(int* a0, int a1) {
 for (int i = 0; i < 6; i++) {
 a0[i] = a0[i] * a1;
 }
}

addi t1, a0, 0x18
loop: lw t0, 0(a0)
 mul t0, t0, a1
 sw t0, 0(a0)
 addi a0, a0, 0x4
 bnez a0, t1, loop
 ret

1.A (10 points) OOO Structures

Fill out the contents of the reorder-buffer, freelist, and map table as the decode unit would until

the ROB is full. Additionally, indicate the final values for the ROB head and tail pointers. The

first instruction has been filled out for you. Assume no instruction will complete execution.

Note: The instruction column of the ROB is optional and will not be graded. Space is provided to

assist you in bookkeeping.

FIFO Free List

p11 p12 p13 p14 p15 p16 p17 p18 p19

Map Table

a0 p0

a1 p1

t0 p2

t1 p3

ROB

IDX Instruction PRd LPRd

0

1

2

3 addi t1, a0, 0x18

4

5

6

7

Final ROB Head: Final ROB Tail:

Q1-2

1.B (4 points) Precise exceptions

Note: For this problem, you should not update the structures in 1A.

After the ROB becomes full, there is a protection fault on the first load in the instruction

sequence. The ROB recovers architectural state using the iterative exception recovery procedure

discussed in class.

How many cycles does it take to recover architectural state?

Which registers are returned to the free list during this process?

1.C (3 points) Checkpointing

To provide fast pipeline restarts after branch mispredictions, some structures and values must be

checkpointed when branches are dispatched. Circle which of the following structures must be

checkpointed for fast pipeline restarts. No explanation is necessary. Assume all buffers are

implemented as circular buffers, with head and tail pointers.

• ROB head pointer

• ROB tail pointer

• Physical register contents

• Physical register present bits

• Issue queue contents

• Physical register free list

• Architectural register map table

• Speculative store buffer head pointer

• Speculative store buffer tail pointer

1.D (3 points) Branch prediction

You build a PC-indexed BHT to improve prediction accuracy of the branch in this loop. What is

the prediction accuracy for the conditional branch after this function is called many times when

using 1-bit counters?

Prediction accuracy with 1-bit counters = ___________________

What is the prediction accuracy for the conditional branch after this function is called many

times when using 2-bit saturating counters?

Prediction accuracy with 2-bit counters = ___________________

Q2-1

Problem 2: Multithreading (20 points)

2.A (12 points) True/False

For each statement below, indicate whether that statement is true or false and briefly explain

your reasoning.

Adding multithreading to a single-issue out-of-order core will in general yield a greater relative

performance improvement than adding multithreading to a similar single-issue in-order core with

an identical memory hierarchy.

A multithreaded processor does not benefit from branch prediction with a sufficiently large

number of threads.

The ISA must contain special multithreading instructions to support multithreading.

Q2-2

2.A (8 points) Performance

Consider execution of the following code on a single-issue in-order processor. Loads have 50-

cycle latency and are fully pipelined. Adds have 4-cycle latency and are fully pipelined. Assume

perfect branch prediction and that branches execute in one cycle.

// pointer chasing

loop: addi a1, a1, -0x1

 lw a0, 0(a0)

 bnez a1, loop

We add multithreading to this processor.

Fixed Switching: How many threads are needed to avoid stalls if threads are switched every

cycle in a fixed round-robin schedule? Show your work.

Data-dependent Switching: How many threads are needed to avoid stalls if threads are

switched only when an instruction cannot issue due to a data dependency?

Q3-1

Problem 3: VLIW (16 points)

In this problem, we will optimize the following code sequence, which performs a scatter

operation with scaling, for a VLIW architecture.

loop:

flw ft0, 0(a0) # x = src[i]
lw t0, 0(a1) # p = idx[i]
addi a0, a0, 0x4 # bump idx
addi a1, a1, 0x4 # bump src

addi a2, a2, -0x1 # decrement n
fmul ft1, ft0, fa0 # scale x
fsw ft1, (t0) # *p = x

bnez a2, loop

• The source, index, and destination arrays do not overlap in memory. (Assume there are

no memory-memory dependencies.)

• The number of iterations (initial value of a2) is greater than 0.

• Assume that no exceptions arise during execution.

The code is executed on an in-order VLIW machine with four execution units. All execution

units are fully pipelined and latch their operands at issue.

• Two integer ALUs, 1-cycle latency, also used for branches

• One load/store unit, 3-cycle latency for loads

• One floating-point unit, 2-cycle latency

Instructions are statically scheduled with no interlocks; all latencies are exposed in the

ISA. All register operands are read before any writes from the same instruction take effect (i.e.,

no WAR hazards between operations within a single VLIW instruction).

Execution units write to the register file at the end of their last pipeline stage, and the results

become visible at the beginning of the following cycle. There is no bypassing. Old values can

be read from registers until they have been overwritten. (You may leverage this to more

efficiently schedule VLIW code.)

Q3-2

The unoptimized scheduling of the above assembly code is shown in the following table.

Label ALU0 ALU1 MEM FPU
loop: addi a0, a0, 0x4 flw ft0, 0(a0)

 addi a1, a1, 0x4 lw t0, 0(a0)

 addi a2, a2, -0x1

 fmul ft1,ft0,fa0

 fsw ft1, 0(t0)

3.A (12 points) Software Pipelining

Schedule operations with VLIW instructions using only software pipelining (no loop

unrolling). Include the prologue and epilogue to initiate and drain the software pipeline. Try to

optimize for efficiency and minimize the number of cycles, but prioritize correctness. Your code

should behave correctly for any a2 > 0.

You do not have to write out the full instructions unless they differ from the original – just the

opcode and the destination register are sufficient. Entries for NOPs can be left blank.

Label ALU0 ALU1 MEM FPU

Q3-3

3.B (4 points) Loop Unrolling

Could this code achieve higher throughput by combining loop unrolling with software

pipelining? If so, briefly explain the approach of applying loop unrolling to the software-

pipelined code. If not, explain your reasoning.

Q4-1

Problem 4: Vectors (18 points)

4.A (12 points) Vectorization

Vectorize the following C function. Write your code in the table. You may not need to use all

the spaces. Refer to Appendix A for an abbreviated RISC-V vector instruction listing.

• Fill in the blanks for the vsetvli instruction.

• The vector unit is configured with SEW=32 for 32-bit elements.

• Note that LMUL=1, so you may use any of the 32 standard vector registers. You may

freely use any temporary registers.

• Assume there is no aliasing between the a, b, and idx arrays.

// Argument registers: a0 a1 a2 a3
void leaky_activation(unsigned int n, int32_t *a, int32_t b, uint32_t *idx,
// a4 a5
 int32_t scale, uint32_t dilation) {
 for (unsigned int i = 0; i < n; i++) {
 if (a[idx[i]] < 0) {
 b[dilation*i] = scale * a[idx[i]];
 }
 }
}

Label Instruction Comment (optional)

 // Prologue (if any)

loop: vsetvli , , e32, m1, ta, mu

 // Do vector operations

Q4-2

 // Update pointers

 // Branch to loop

end: ret

4.B (6 points) Iron Law

For each of the following modifications to a baseline vector machine, indicate whether it has an

increasing, decreasing, negligible, or ambiguous effect on CPI and on overall runtime (time

per program) for a trivially vectorizable program, such as vector-vector add.

Briefly explain your reasoning in one or two sentences.

 Cycles / Instruction Time / Program

Increase maximum hardware

vector length (MAXVL)

Increase number of lanes

