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Problem 1: Out-of-order Execution (20 Points) 

We execute the following function on an out-of-order core with a unified physical register file. 
 

void scale_6(int* a0, int a1) { 
  for (int i = 0; i < 6; i++) { 
    a0[i] = a0[i] * a1; 
  } 
} 
 

addi t1, a0, 0x18 
loop: lw t0, 0(a0) 
 mul t0, t0, a1 
 sw t0, 0(a0) 
 addi a0, a0, 0x4 
 bnez  a0, t1, loop 
 ret 

 

1.A (10 points) OOO Structures 

Fill out the contents of the reorder-buffer, freelist, and map table as the decode unit would until 

the ROB is full. Additionally, indicate the final values for the ROB head and tail pointers. The 

first instruction has been filled out for you. Assume no instruction will complete execution. 
 

Note: The instruction column of the ROB is optional and will not be graded. Space is provided to 

assist you in bookkeeping. 

 

FIFO Free List 

p11 p12 p13 p14 p15 p16 p17 p18 p19        

 

Map Table 

a0 p0        

a1 p1        

t0 p2        

t1 p3        

 

ROB 

IDX Instruction PRd LPRd 

0    

1    

2    

3 addi t1, a0, 0x18   

4    

5    

6    

7    

 

Final ROB Head:  Final ROB Tail:  
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1.B (4 points) Precise exceptions 

Note: For this problem, you should not update the structures in 1A. 

After the ROB becomes full, there is a protection fault on the first load in the instruction 

sequence. The ROB recovers architectural state using the iterative exception recovery procedure 

discussed in class. 

 

How many cycles does it take to recover architectural state? 

 

 

 

Which registers are returned to the free list during this process? 

 

 

 

1.C (3 points) Checkpointing 

To provide fast pipeline restarts after branch mispredictions, some structures and values must be 

checkpointed when branches are dispatched. Circle which of the following structures must be 

checkpointed for fast pipeline restarts. No explanation is necessary. Assume all buffers are 

implemented as circular buffers, with head and tail pointers. 

 

 

• ROB head pointer 

• ROB tail pointer 

• Physical register contents 

• Physical register present bits 

• Issue queue contents 

• Physical register free list 

• Architectural register map table 

• Speculative store buffer head pointer 

• Speculative store buffer tail pointer

 

1.D (3 points) Branch prediction 

You build a PC-indexed BHT to improve prediction accuracy of the branch in this loop. What is 

the prediction accuracy for the conditional branch after this function is called many times when 

using 1-bit counters?  

 

 

Prediction accuracy with 1-bit counters = ___________________ 

 

 

What is the prediction accuracy for the conditional branch after this function is called many 

times when using 2-bit saturating counters? 

 

 

Prediction accuracy with 2-bit counters = ___________________ 



Q2-1 

 

Problem 2: Multithreading (20 points) 
 

2.A (12 points) True/False 

For each statement below, indicate whether that statement is true or false and briefly explain 

your reasoning. 

 

Adding multithreading to a single-issue out-of-order core will in general yield a greater relative 

performance improvement than adding multithreading to a similar single-issue in-order core with 

an identical memory hierarchy. 
 

 

 

 

 

 

 

 

 

 

 

 

A multithreaded processor does not benefit from branch prediction with a sufficiently large 

number of threads. 

 

 

 

 

 

 

 

 

 

 

 

 

The ISA must contain special multithreading instructions to support multithreading. 
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2.A (8 points) Performance 

Consider execution of the following code on a single-issue in-order processor.  Loads have 50-

cycle latency and are fully pipelined. Adds have 4-cycle latency and are fully pipelined.  Assume 

perfect branch prediction and that branches execute in one cycle. 

 
// pointer chasing 

loop: addi a1, a1, -0x1 

      lw a0, 0(a0) 

      bnez a1, loop 

 

We add multithreading to this processor. 

 

Fixed Switching: How many threads are needed to avoid stalls if threads are switched every 

cycle in a fixed round-robin schedule?  Show your work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data-dependent Switching: How many threads are needed to avoid stalls if threads are 

switched only when an instruction cannot issue due to a data dependency? 
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Problem 3: VLIW (16 points) 
 

In this problem, we will optimize the following code sequence, which performs a scatter 

operation with scaling, for a VLIW architecture. 

loop: 

flw  ft0, 0(a0)        # x = src[i] 
lw   t0, 0(a1)         # p = idx[i] 
addi a0, a0, 0x4       # bump idx 
addi a1, a1, 0x4       # bump src 

addi a2, a2, -0x1      # decrement n 
fmul ft1, ft0, fa0     # scale x 
fsw  ft1, (t0)         # *p = x 

bnez a2, loop 

 

• The source, index, and destination arrays do not overlap in memory.  (Assume there are 

no memory-memory dependencies.) 

• The number of iterations (initial value of a2) is greater than 0. 

• Assume that no exceptions arise during execution. 

The code is executed on an in-order VLIW machine with four execution units.  All execution 

units are fully pipelined and latch their operands at issue. 

 

• Two integer ALUs, 1-cycle latency, also used for branches 

• One load/store unit, 3-cycle latency for loads 

• One floating-point unit, 2-cycle latency 

Instructions are statically scheduled with no interlocks; all latencies are exposed in the 

ISA.  All register operands are read before any writes from the same instruction take effect (i.e., 

no WAR hazards between operations within a single VLIW instruction). 

Execution units write to the register file at the end of their last pipeline stage, and the results 

become visible at the beginning of the following cycle.  There is no bypassing.  Old values can 

be read from registers until they have been overwritten.  (You may leverage this to more 

efficiently schedule VLIW code.) 
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The unoptimized scheduling of the above assembly code is shown in the following table. 

Label ALU0 ALU1 MEM FPU 
loop: addi a0, a0, 0x4  flw ft0, 0(a0)  

 addi a1, a1, 0x4  lw t0, 0(a0)  

 addi a2, a2, -0x1    

    fmul ft1,ft0,fa0 

     

   fsw ft1, 0(t0)  

 

3.A (12 points) Software Pipelining 

Schedule operations with VLIW instructions using only software pipelining (no loop 

unrolling).  Include the prologue and epilogue to initiate and drain the software pipeline.  Try to 

optimize for efficiency and minimize the number of cycles, but prioritize correctness.  Your code 

should behave correctly for any a2 > 0. 

You do not have to write out the full instructions unless they differ from the original – just the 

opcode and the destination register are sufficient.  Entries for NOPs can be left blank. 

Label ALU0 ALU1 MEM FPU 
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3.B (4 points) Loop Unrolling 

Could this code achieve higher throughput by combining loop unrolling with software 

pipelining?  If so, briefly explain the approach of applying loop unrolling to the software-

pipelined code.  If not, explain your reasoning. 
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Problem 4: Vectors (18 points) 
 

4.A (12 points) Vectorization 

Vectorize the following C function.  Write your code in the table.  You may not need to use all 

the spaces.  Refer to Appendix A for an abbreviated RISC-V vector instruction listing. 

• Fill in the blanks for the vsetvli instruction. 

• The vector unit is configured with SEW=32 for 32-bit elements. 

• Note that LMUL=1, so you may use any of the 32 standard vector registers.  You may 

freely use any temporary registers. 

• Assume there is no aliasing between the a, b, and idx arrays. 

// Argument registers:             a0          a1         a2           a3 
void leaky_activation(unsigned int n, int32_t *a, int32_t b, uint32_t *idx, 
//                            a4              a5 
                      int32_t scale, uint32_t dilation) { 
    for (unsigned int i = 0; i < n; i++) { 
        if (a[idx[i]] < 0) { 
            b[dilation*i] = scale * a[idx[i]]; 
        } 
    } 
} 

 

Label Instruction Comment (optional) 

 // Prologue (if any)  

   

   

   

loop: vsetvli    ,    , e32, m1, ta, mu  

 // Do vector operations  
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 // Update pointers  

   

   

   

   

   

   

   

 // Branch to loop  

   

end: ret  

 

4.B (6 points) Iron Law 

For each of the following modifications to a baseline vector machine, indicate whether it has an 

increasing, decreasing, negligible, or ambiguous effect on CPI and on overall runtime (time 

per program) for a trivially vectorizable program, such as vector-vector add. 

Briefly explain your reasoning in one or two sentences. 

 Cycles / Instruction Time / Program 

Increase maximum hardware 

vector length (MAXVL) 
  

Increase number of lanes   

 


