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Problem 1: Out-of-Order Scheduling 

 

This problem deals with an out-of-order single-issue processor that is based on the basic RISC-V 

pipeline and a floating-point unit. The FPU has one adder, one multiplier, and one load/store unit. The 

FP adder has a three-cycle latency and is fully pipelined. The FP multiplier has a six-cycle latency and 

is fully pipelined. Floating point stores take one cycle and floating point loads take two cycles. The 

integer functional unit takes a single cycle. 

 

There are 31 writable integer registers (x1-x31) and 32 floating-point registers (f0-f31). To maximize 

number of instructions that can be in the pipeline, register renaming is used. The decode stage can add 

up to one instruction per cycle to the re-order buffer (ROB). The CPU uses a data-in-ROB design, so 

there is one rename register associated with each ROB entry. Functional units write back to the ROB 

upon completion. The functional units share a single write port to the ROB. In the case of a write-back 

conflict, the older instruction writes back first. The instructions are committed in order and only one 

instruction may be committed per cycle. The earliest time an instruction can be committed is one cycle 

after write back. 

 

Floating-point instructions (including loads writing floating-point registers) must spend one cycle in the 

writeback stage before their result can be used.  

 

Integer results enter writeback one cycle after issue and can be used after spending one cycle in the 

writeback stage (i.e., two cycles after issue). They can also be used the next cycle after issue via a 

bypass path from the integer functional unit (not shown in diagram). 

 

 

 



 

 

For the following questions, we will evaluate the performance of the code segment below. 
 

I1 fld    f1, 0(x1) 

I2 fadd.d f2, f0, f1 

I3 fmul.d f3, f0, f2 

I4 addi   x1, x1, 8 

I5 fld    f1, 0(x1) 

I6 fadd.d f2, f1, f2 

I7 fmul.d f2, f2, f3 

 

 

A) For this part, consider an ideal case where we have an unlimited number of ROB entries.  

 

In the table below, fill in the cycle number for when each instruction enters the ROB, issues, 

writes back, and commits. Also, fill in the new register names for each instruction, where 

applicable. 

 

Since we have an infinite supply of register names, you should use a new register name for each 

register that is written (P0, P1, …). Keep in mind that after a register has been renamed, 

subsequent instructions that refer to that register must refer to the new register name. 
 

 Time  

OP 

 

Dest 

 

Src1 

 

Src2 
Enter ROB Issue WB Commit 

I1 -1 0 2 3 fld P0 x1 - 

I2 0 3 6 7 fadd.d P1 f0 P0 

I3 1 7 13 14 fmul.d P2 f0 P1 

I4 2 4 5 15 addi P3 x1 - 

I5 3 5 7 16 fld P4 P3 - 

I6 4 8 11 17 fadd.d P5 P4 P1 

I7 5 14 20 21 fmul.d P6 P5 P2 

 

 

 



 

 

B) For this part, consider a more realistic system with a four-entry ROB. Any ROB entry can be 

used one cycle after the instruction using it commits. Fill in the table as you did in part A. If the 

instruction uses a source register that has already been retired, use the architectural name of the 

register. 
 

 Time  

OP 

 

Dest 

 

Src1 

 

Src2 
Enter ROB Issue WB Commit 

I1 -1 0 2 3 fld P0 x1 - 

I2 0 3 6 7 fadd.d P1 f0 P0 

I3 1 7 13 14 fmul.d P2 f0 P1 

I4 2 4 5 15 addi P3 x1 - 

I5 4 5 7 16 fld P0 P3 - 

I6 8 9 12 17 fadd.d P1 P0 f2 

I7 15 16 22 23 fmul.d P2 P1 f3 

 

 

 



 

 

Problem 2: Unified Physical Register Files 
 

In this problem, we will consider an out-of-order CPU design using a unified physical register file. All 

data, both retired and inflight, are kept in the same physical register file. The pipeline contains a remap 

file that is indexed by the architectural register number and stores the physical register number the 

architectural register maps to. The physical register file contains the register data and a bit indicating 

whether the data is valid or not. The pipeline also contains a free list, which is a FIFO queue containing 

the physical register numbers that are not yet mapped to architectural registers. On issue, the current 

mappings of the destination register and two source registers are read from the remap file and stored in 

the ROB. The head of the free list is then popped off and written to the entry for the destination 

architectural register in the remap file. On a branch mispredict or exception, the remap file can be 

restored by going backwards through the ROB and restoring the old physical register mappings. 
 

 

 



 

 

A) Consider a system with eight architectural registers, sixteen physical registers, and a four-entry 

circular ROB. The following table shows the ROB when an exception occurs in the instruction 

indicated in bold. 

 

 ROB PC Arch. Register Old Phys. 

Register 

 0x80001008 x1 P9 

tail -> 0x8000101C x2 P8 

head -> 0x80001010 x6 P5 

 0x80001014 x2 P11 

 

The left column of the following table shows the state of the remap file when the exception is 

detected. Fill out the right column to show the restored state.  

 

Arch 

Reg 

Current State Restored State 

x0 P1 P1 

x1 P6 P9 

x2 P2 P11 

x3 P10 P10 

x4 P7 P7 

x5 P4 P4 

x6 P13 P13 

x7 P15 P15 

 

Note: The head represents the oldest instruction and the tail represents the youngest instruction in the 

ROB. 



 

 

B) When can a physical register be released and put back on the free list? 

 

There are two situations in which a physical register can be put back on the free list. 

 

1) When handling an exception, or killing instructions on an incorrectly predicated path, the 

destination physical registers of younger misspeculated instructions are returned to the free 

list as the remap file is being regenerated.  

 

2) When an instruction commits, the old physical register for its destination architectural 

register can be put back on the free list 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C) How many physical registers must there be so that the pipeline never stalls due to lack of 

physical registers in the free list? 

 
 

The number of physical registers should be the number of architectural registers plus the number of ROB entries.  

 

Under this condition, there will always be a free physical register if there is a free ROB entry, as each ROB entry 

can only be assigned 0 or 1 physical destination registers. The pipeline would run out of ROB slots as soon or 

sooner than it would run out of physical registers 

 



 

 

D) Here are some of the initial register mappings and the free list for a RISC-V OoO CPU with a 

unified physical register file containing both integer and floating-point registers. 

 

Arch Register Phys Register  Free List 

f0 P6 P8 

f1 P9 P20 

f2 P3 P10 

x2 P5 P21 

x3 P13 P17 

x4 P11  

 

For the following instruction sequence, indicate which physical register gets assigned as the 

destination register and which physical register gets added to the free list on commit. 

 

Instruction Destination Register Freed Register 

fld    f2, 0(x3) P8 P3 

fld    f1, 0(x4) P20 P9 

fmul.d f2, f2, f0 P10 P8 

fadd.d f1, f2, f1 P21 P20 

fsd    f1, 0(x2) - - 

addi   x4, x4, 8 P17 P11 

addi   x3, x3, 8 P3 P13 

addi   x2, x2, 8 P9 P5 

 

 

E) If we wanted to implement register renaming in a superscalar OoO core that can issue two 

instructions per cycle, what would we have to change? 

 

 

The danger is that the two instructions we issue in the same cycle have a hazard between them. 

In that case, renaming them independently would cause wrong labels to be assigned. For 

example, in case of a RAW hazard, the destination register of the first instruction need to be the 

same physical register as the read register of the second instruction. We need to add a bypass to 

make this happen because in the same cycle that the second instruction reads the rename table, 

the first instruction has not updated it yet. The same is true of WAW hazards. If the second 

instruction writes to the same architectural register as the first, its previous physical destination 

register must be the physical destination register used by the first, not the current entry in the 

remap table. 

 



 

 

Problem 3: Pipelining with Branch Prediction 

 

For this question, consider a fully bypassed 5-stage RISC-V processor. We have reproduced the 

pipeline diagram below (bypasses are not shown). Branches are resolved in the Execute Stage, and the 

Fetch Stage always speculates that the next PC is PC+4. For this problem, we will ignore unconditional 

jumps, and only concern ourselves with conditional branches. 

 

A) Fill in the following pipeline diagram using the code segment below. The first two instructions 

have been done for you. Only fill in the given rows. 

Throughout this question, make sure you also show instructions that were speculated to be 

executed and then flushed (it would help to mark them explicitly) in the instruction/time 

diagrams, as they also consume pipeline resources. For example, if an instruction gets flushed at 

some time t, you can mark the t column as – for that instruction. 

0x2000: ori  x2, x0, -1 

0x2004: addi x3, x0, -1 

0x2008: beq  x2, x3, 0x2004  

0x200c: lw   x5, 4(x6)  

0x2010: xor  x7, x5, x7 

0x2014: and  x5, x3, x7 

0x2018: and  x3, x2, x3 

 



 

 

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

0x2000 ori F D X M W         

0x2004 addi  F D X M W        

0x2008 beq   F D X M W       

0x200C lw    F D - - -      

0x2010 xor     F - - - -     

0x2004 addi      F D X M W    

0x2008 beq       F D X M W   

 

 

B) As you showed in the first parts of this question, branches in RISC-V can be expensive in a 5-

stage pipeline. One way to help reduce this branch penalty is to add a Branch History Table 

(BHT) to the processor. This new proposed datapath is shown below: 

 

 

The BHT has been added in the Decode Stage.   The BHT is indexed by the PC register in the 

Decode Stage.  Branch address calculation has been moved to the Decode Stage. This allows 

the processor to redirect the PC if the BHT predicts “Taken”. 

On a BHT mis-prediction, (1) the branch comparison logic in the Execute Stage detects mis-

predicts, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the correct 

branch target (br_correct).   

Remember the Fetch Stage is still predicting PC+4 every cycle, unless corrected by either the 

BHT in the Decode Stage (br_predicted) or by the branch logic in the Execute Stage 

(br_correct).  

Using the code segment below, fill in the following pipeline diagram.    Initially, the BHT 

bimodal counters are all initialized to “strongly-taken”. The register x2 is initialized to 1, while 

the register x3 is initialized to 2. The first instruction has been done for you. It is okay if you do 

not use the entire table. 



 

 

0x2000: lw   x7, 0(x6) 

0x2004: addi x2, x2, 1  

0x2008: bne  x2, x3, 0x2000  

0x200c: sw   x7, 0(x6)  

0x2010: add  x5, x5, x4  

0x2014: sub  x7, x7, x5 

 

 

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

0x2000 lw F D X M W         

0x2004 addi  F D X M W        

0x2008 bne   F D X M W       

0x200c sw    F - - - -      

0x2000 lw     F - - - -     

0x200c sw      F D X M W    

0x2010 add       F D X M W   

0x2014 sub        F D X M W  



 

 

C) Unfortunately, while the BHT is an improvement, we still have to wait until we know the 

branch address to act on the BHT’s prediction.  We can solve this by using a two-entry Branch 

Target Buffer (BTB).  

The new pipeline is shown below. For this question, we have removed the BHT and will only 

be using the BTB. 

 

The BTB has been added in the Fetch Stage. The BTB is indexed by the PC register in the Fetch 

Stage. Branch address calculation has been moved back to the Execute Stage. 

On a branch mis-prediction, (1) the branch comparison logic in the Execute Stage detects the 

mis-predict, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the 

correct branch target (br_correct).   

Remember the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a 

prediction (has a matching and valid entry for the current PC) or the branch logic in the Execute 

Stage corrects for a branch mis-prediction (br_correct). 

Using the code segment below (the exact same code from 3.B), fill in the following pipeline 

diagram. Upon entrance to this code segment, the register x2 is initialized to 1, while the 

register x3 is initialized to 2. 

0x2000: lw   x7, 0(x6) 

0x2004: addi x2, x2, 1  

0x2008: bne  x2, x3, 0x2000  

0x200c: sw   x7, 0(x6)  

0x2010: add  x5, x5, x4  

0x2014: sub  x7, x5, x7 

 



 

 

Initially, the BTB contains: 

 

(For simplicity, the tag is 32 bits, and we match the entire 32-bit PC register in the Decode 

Stage to verify a match). It is okay if you do not use the entire table.  

 

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

0x2000 lw F D X M W         

0x2004 addi  F D X M W        

0x2008 bne   F D X M W       

0x2000 lw    F D - - -      

0x2004 addi     F - - - -     

0x200C sw      F D X M W    

0x2010 add       F D X M W   

0x2014 and        F D X M W  

 



 

 

Problem 4: Load/Store Speculation 

 

A) Suppose we want to execute stores out-of-order. Could there be an issue if we allow stores to 

write to the cache even when there are uncommitted instructions before them in program order? 

 

Yes, executing stores ahead of other instructions and writing to the cache before commit can 

lead to the following issues. 

 

1. Imprecise exceptions: If an instruction before the store in program order has an exception, 

you have to roll back the architectural state. This is hard to do if you’ve already modified 

the cache contents. The same is true if the store is the result of a mispredicted branch. 

 

2. Memory ordering: If there are load or store instructions to the same address before the 

completed store in program order, writing to the cache on completion will change the 

program’s behavior from what would happen if executed in-order. 

 

B) Suppose we bypass load values from a speculative store buffer. If the load address hits in both 

the store buffer and the cache, which one should we use: the data forwarded from the store 

buffer or the data from the cache? 

 

If the store buffer hit corresponds to a store instruction that comes before the load in program 

order, we should take the store buffer data. If the store instruction comes after the load 

instruction in program order, we should take the cache data. 

 

 

 

C) Suppose that we want loads and stores to execute out-of-order with respect to each other. Under 

what circumstances in the code below can we execute instruction 5 before executing any 

others? Assume this datapath implements register renaming. 

1. add x1, x1, x2 

2. sw  x5, (x2) 

3. lw  x6, (x8) 

4. sw  x5, (x6) 

5. lw  x8, (x3) 

6. add x8, x8, x8 

 

 

We can only execute instruction 5 before the others if the address it is loading from does not 

overlap the addresses being stored to in instructions 2 and 4. So |x2 – x3| ≥ 4 and |x6 – x3| ≥ 4. 

 



 

 

D) Under what circumstances can we execute instruction 4 in the code above before executing any 

others? 

 

Instruction 4 has a RAW hazard with instruction 3 because it depends on the value of register 

x6 that is being loaded by instruction 3. Therefore, it cannot execute first. It does not have any 

dependencies on any other instruction, since stores do not change architectural state until they 

are committed, so it can execute as soon as instruction 3 completes. 

 

 

 

 

 

 

E) Now assume that we execute instruction 5 before all other instructions, but instruction 5 causes 

an exception (e.g., page fault). We want to provide precise exceptions in this processor. What 

happens with instructions 1, 2, 3, 4, and 6 before execution switches to the OS handler? What 

should happen if instructions, 1, 2, 3, or 4 also raise an exception? 

 

To provide precise exceptions, we have to execute and commit all instructions prior to 

instruction 5 before switching to the OS handler. Instruction 6 must be killed (thus not commit) 

because it’s after 5. If instructions 1, 2, 3, or 4 also raise an exception, the earliest instruction to 

have an exception should take precedent, and all later instructions should be flushed from the 

pipeline. 

 

 

 

 

 

F) How can we always be able to execute loads and stores out of order before their addresses are 

known? What is the downside and how is it handled? Specifically, assume that we executed 

instruction 5 before instruction 4, but then realized that |x6 – x3| < 4. 

 

We can speculatively assume that addresses of all loads and stores are non-overlapping and 

issue them before knowing their addresses. Once addresses become known, if we realize that 

we shouldn’t have reordered some loads and stores, we have to terminate the ones we shouldn’t 

have executed as well as any further instructions that depend on them. In the example, we have 

to terminate instruction 5 as well as 6 once we figure out that |x6- x3| < 4. Once instruction 4 

completes, we then re-execute instructions 5 and 6. 

 

 

 

 

 



 

 

Problem 5: Branch Predictor Accuracy 

 

For this problem, we are interested in the following code: 

 

int array[N] = {…}; 

for (int i = 0; i < N; i++) 

  if (array[i] != 0) 

    array[i]++; 

 

Using the compiler, we get: 

 

 li   a0, N 

 la   a1, array 

loop: 

 lw   a2, 0(a1) 

 beqz a2, endif 

 addi a2, a2, 1 

 sw   a2, 0(a1) 

endif: 

 addi a0, a0, -1 

 addi a1, a1, 4 

 bnez a0, loop 

 

 

 

 



 

 

A) Full BHT 

The processor that this code runs on uses a 512-entry branch history table (BHT), indexed by 

PC [10:2]. Each entry in the BHT contains a 2-bit counter, initialized to the 01 state.  

Each 2-bit counter works as follows: the state of the 2-bit counter decides whether the branch is 

predicted taken or not taken, as shown in the table below. If the branch is actually taken, the 

counter is incremented (e.g., state 00 becomes state 01). If the branch is not taken, the counter is 

decremented. The counter saturates at 00 and 11 (a not-taken branch while in the 00 state keeps 

the 2-bit counter in the 00 state). 

State Prediction 

00 Not taken 

01  Not taken 

10 Taken 

11  Taken 

 

If array = {1, 0, 0, -4, 0}, what is the prediction accuracy for the two branches found in the 

above code for five iterations of the loop, using the 512-entry BHT described above? 

 

The five invocations of the loop branch are shown below. Accuracy: 3/5 

 

State Prediction Actual 

01 Not taken Taken 

10 Taken Taken 

11 Taken Taken 

11 Taken Taken 

11 Taken Not taken 

 

The five invocations of the if branch are shown below: Accuracy: 1/5 

 

State Prediction Actual 

01 Not taken Not taken 

00 Not taken Taken 

01 Not taken Taken 

10 Taken Not taken 

01 Not taken Taken 

 

 

 



 

 

B) Small BHT 

Now consider a BHT with only a single entry. That is, both branches will share the same 

counter. Now what will the prediction accuracy be for each branch? Assume we are using the 

same array, {1, 0, 0, -4, 0}. 

 

The ten branch invocations are shown below. The loop branch has 3/5 accuracy, and the if 

branch had 3/5 accuracy. 

 

Branch State Prediction Actual 

if0 01 Not taken Not taken 

loop0 00 Not taken Taken 

if1 01 Not taken Taken 

loop1 10 Taken Taken 

if2 11 Taken Taken 

loop2 11 Taken Taken 

if3 11 Taken Not taken 

loop3 10 Taken Taken 

if4 11 Taken Taken 

loop4 11 Taken Not taken 

 

 

C) Static Hints 

For this question, assume that the compiler can specify statically which way the processor 

should predict the branch will go. If the processor sees a "branch-likely" hint from the compiler, 

it predicts the branch is taken and does NOT update the BHT with this branch (i.e., any 

branches the compiler can analyze do not pollute the BHT).  

Which branches in the program, if any, should the compiler provide hints for? Assume the input 

array for the compiler's test runs varies widely and the compiler must be fairly confident in the 

accuracy of a static branch hint. 

 

 

The compiler can statically hint that the loop branch will be taken, since we know it will be 

taken more often than not. We should not add static hints for the if branch, because this branch 

depends on the data. 

 

 

 


