

CS152 Computer Architecture and

Engineering

Complex Pipelines, Out-of-Order

Execution, and Speculation

 SOLUTION

Assigned

03/05/2024
Problem Set #3, Version (1.1)

Due March 18

@ 11:59:59PT

http://inst.eecs.berkeley.edu/~cs152/sp24

The problem sets are intended to help you learn the material, and we encourage you to collaborate with

other students and to ask questions in discussion sections and office hours to understand the problems.

However, each student must turn in their own solution to the problems.

The problem sets also provide essential background material for the exam and the midterms. The problem

sets will be graded primarily on an effort basis, but if you do not work through the problem sets yourself

you are unlikely to succeed on the exam or midterms!

By grading primarily on an effort basis, we mean that we will award significant partial credit for

demonstrating your understanding of the problem and concepts at hand. As long as reasonable

assumptions and explanations are provided, we will lean towards awarding credit.

We will distribute solutions to the problem set after the deadline to give you feedback.

Assignments must be submitted through Gradescope by 11:59:59pm PT on the specified due date.

Box/clearly mark all solutions that don’t involve filling in a figure/table. Only boxed/clearly marked

solutions and filled in figures/tables will be considered for grading. See the course website for the policy

on slip days (late submissions).

Name: ___

SID: ___

Collaborators (Name, SID):

__

http://inst.eecs.berkeley.edu/~cs152/sp24
https://www.gradescope.com/courses/703789
https://inst.eecs.berkeley.edu/~cs152/sp24/152_policies/#slip-days

Problem 1: Out-of-Order Scheduling

This problem deals with an out-of-order single-issue processor that is based on the basic RISC-V

pipeline and a floating-point unit. The FPU has one adder, one multiplier, and one load/store unit. The

FP adder has a three-cycle latency and is fully pipelined. The FP multiplier has a six-cycle latency and

is fully pipelined. Floating point stores take one cycle and floating point loads take two cycles. The

integer functional unit takes a single cycle.

There are 31 writable integer registers (x1-x31) and 32 floating-point registers (f0-f31). To maximize

number of instructions that can be in the pipeline, register renaming is used. The decode stage can add

up to one instruction per cycle to the re-order buffer (ROB). The CPU uses a data-in-ROB design, so

there is one rename register associated with each ROB entry. Functional units write back to the ROB

upon completion. The functional units share a single write port to the ROB. In the case of a write-back

conflict, the older instruction writes back first. The instructions are committed in order and only one

instruction may be committed per cycle. The earliest time an instruction can be committed is one cycle

after write back.

Floating-point instructions (including loads writing floating-point registers) must spend one cycle in the

writeback stage before their result can be used.

Integer results enter writeback one cycle after issue and can be used after spending one cycle in the

writeback stage (i.e., two cycles after issue). They can also be used the next cycle after issue via a

bypass path from the integer functional unit (not shown in diagram).

For the following questions, we will evaluate the performance of the code segment below.

I1 fld f1, 0(x1)

I2 fadd.d f2, f0, f1

I3 fmul.d f3, f0, f2

I4 addi x1, x1, 8

I5 fld f1, 0(x1)

I6 fadd.d f2, f1, f2

I7 fmul.d f2, f2, f3

A) For this part, consider an ideal case where we have an unlimited number of ROB entries.

In the table below, fill in the cycle number for when each instruction enters the ROB, issues,

writes back, and commits. Also, fill in the new register names for each instruction, where

applicable.

Since we have an infinite supply of register names, you should use a new register name for each

register that is written (P0, P1, …). Keep in mind that after a register has been renamed,

subsequent instructions that refer to that register must refer to the new register name.

 Time

OP

Dest

Src1

Src2
Enter ROB Issue WB Commit

I1 -1 0 2 3 fld P0 x1 -

I2 0 3 6 7 fadd.d P1 f0 P0

I3 1 7 13 14 fmul.d P2 f0 P1

I4 2 4 5 15 addi P3 x1 -

I5 3 5 7 16 fld P4 P3 -

I6 4 8 11 17 fadd.d P5 P4 P1

I7 5 14 20 21 fmul.d P6 P5 P2

B) For this part, consider a more realistic system with a four-entry ROB. Any ROB entry can be

used one cycle after the instruction using it commits. Fill in the table as you did in part A. If the

instruction uses a source register that has already been retired, use the architectural name of the

register.

 Time

OP

Dest

Src1

Src2
Enter ROB Issue WB Commit

I1 -1 0 2 3 fld P0 x1 -

I2 0 3 6 7 fadd.d P1 f0 P0

I3 1 7 13 14 fmul.d P2 f0 P1

I4 2 4 5 15 addi P3 x1 -

I5 4 5 7 16 fld P0 P3 -

I6 8 9 12 17 fadd.d P1 P0 f2

I7 15 16 22 23 fmul.d P2 P1 f3

Problem 2: Unified Physical Register Files

In this problem, we will consider an out-of-order CPU design using a unified physical register file. All

data, both retired and inflight, are kept in the same physical register file. The pipeline contains a remap

file that is indexed by the architectural register number and stores the physical register number the

architectural register maps to. The physical register file contains the register data and a bit indicating

whether the data is valid or not. The pipeline also contains a free list, which is a FIFO queue containing

the physical register numbers that are not yet mapped to architectural registers. On issue, the current

mappings of the destination register and two source registers are read from the remap file and stored in

the ROB. The head of the free list is then popped off and written to the entry for the destination

architectural register in the remap file. On a branch mispredict or exception, the remap file can be

restored by going backwards through the ROB and restoring the old physical register mappings.

A) Consider a system with eight architectural registers, sixteen physical registers, and a four-entry

circular ROB. The following table shows the ROB when an exception occurs in the instruction

indicated in bold.

 ROB PC Arch. Register Old Phys.

Register

 0x80001008 x1 P9

tail -> 0x8000101C x2 P8

head -> 0x80001010 x6 P5

 0x80001014 x2 P11

The left column of the following table shows the state of the remap file when the exception is

detected. Fill out the right column to show the restored state.

Arch

Reg

Current State Restored State

x0 P1 P1

x1 P6 P9

x2 P2 P11

x3 P10 P10

x4 P7 P7

x5 P4 P4

x6 P13 P13

x7 P15 P15

Note: The head represents the oldest instruction and the tail represents the youngest instruction in the

ROB.

B) When can a physical register be released and put back on the free list?

There are two situations in which a physical register can be put back on the free list.

1) When handling an exception, or killing instructions on an incorrectly predicated path, the

destination physical registers of younger misspeculated instructions are returned to the free

list as the remap file is being regenerated.

2) When an instruction commits, the old physical register for its destination architectural

register can be put back on the free list

C) How many physical registers must there be so that the pipeline never stalls due to lack of

physical registers in the free list?

The number of physical registers should be the number of architectural registers plus the number of ROB entries.

Under this condition, there will always be a free physical register if there is a free ROB entry, as each ROB entry

can only be assigned 0 or 1 physical destination registers. The pipeline would run out of ROB slots as soon or

sooner than it would run out of physical registers

D) Here are some of the initial register mappings and the free list for a RISC-V OoO CPU with a

unified physical register file containing both integer and floating-point registers.

Arch Register Phys Register Free List

f0 P6 P8

f1 P9 P20

f2 P3 P10

x2 P5 P21

x3 P13 P17

x4 P11

For the following instruction sequence, indicate which physical register gets assigned as the

destination register and which physical register gets added to the free list on commit.

Instruction Destination Register Freed Register

fld f2, 0(x3) P8 P3

fld f1, 0(x4) P20 P9

fmul.d f2, f2, f0 P10 P8

fadd.d f1, f2, f1 P21 P20

fsd f1, 0(x2) - -

addi x4, x4, 8 P17 P11

addi x3, x3, 8 P3 P13

addi x2, x2, 8 P9 P5

E) If we wanted to implement register renaming in a superscalar OoO core that can issue two

instructions per cycle, what would we have to change?

The danger is that the two instructions we issue in the same cycle have a hazard between them.

In that case, renaming them independently would cause wrong labels to be assigned. For

example, in case of a RAW hazard, the destination register of the first instruction need to be the

same physical register as the read register of the second instruction. We need to add a bypass to

make this happen because in the same cycle that the second instruction reads the rename table,

the first instruction has not updated it yet. The same is true of WAW hazards. If the second

instruction writes to the same architectural register as the first, its previous physical destination

register must be the physical destination register used by the first, not the current entry in the

remap table.

Problem 3: Pipelining with Branch Prediction

For this question, consider a fully bypassed 5-stage RISC-V processor. We have reproduced the

pipeline diagram below (bypasses are not shown). Branches are resolved in the Execute Stage, and the

Fetch Stage always speculates that the next PC is PC+4. For this problem, we will ignore unconditional

jumps, and only concern ourselves with conditional branches.

A) Fill in the following pipeline diagram using the code segment below. The first two instructions

have been done for you. Only fill in the given rows.

Throughout this question, make sure you also show instructions that were speculated to be

executed and then flushed (it would help to mark them explicitly) in the instruction/time

diagrams, as they also consume pipeline resources. For example, if an instruction gets flushed at

some time t, you can mark the t column as – for that instruction.

0x2000: ori x2, x0, -1

0x2004: addi x3, x0, -1

0x2008: beq x2, x3, 0x2004

0x200c: lw x5, 4(x6)

0x2010: xor x7, x5, x7

0x2014: and x5, x3, x7

0x2018: and x3, x2, x3

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 ori F D X M W

0x2004 addi F D X M W

0x2008 beq F D X M W

0x200C lw F D - - -

0x2010 xor F - - - -

0x2004 addi F D X M W

0x2008 beq F D X M W

B) As you showed in the first parts of this question, branches in RISC-V can be expensive in a 5-

stage pipeline. One way to help reduce this branch penalty is to add a Branch History Table

(BHT) to the processor. This new proposed datapath is shown below:

The BHT has been added in the Decode Stage. The BHT is indexed by the PC register in the

Decode Stage. Branch address calculation has been moved to the Decode Stage. This allows

the processor to redirect the PC if the BHT predicts “Taken”.

On a BHT mis-prediction, (1) the branch comparison logic in the Execute Stage detects mis-

predicts, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the correct

branch target (br_correct).

Remember the Fetch Stage is still predicting PC+4 every cycle, unless corrected by either the

BHT in the Decode Stage (br_predicted) or by the branch logic in the Execute Stage

(br_correct).

Using the code segment below, fill in the following pipeline diagram. Initially, the BHT

bimodal counters are all initialized to “strongly-taken”. The register x2 is initialized to 1, while

the register x3 is initialized to 2. The first instruction has been done for you. It is okay if you do

not use the entire table.

0x2000: lw x7, 0(x6)

0x2004: addi x2, x2, 1

0x2008: bne x2, x3, 0x2000

0x200c: sw x7, 0(x6)

0x2010: add x5, x5, x4

0x2014: sub x7, x7, x5

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 lw F D X M W

0x2004 addi F D X M W

0x2008 bne F D X M W

0x200c sw F - - - -

0x2000 lw F - - - -

0x200c sw F D X M W

0x2010 add F D X M W

0x2014 sub F D X M W

C) Unfortunately, while the BHT is an improvement, we still have to wait until we know the

branch address to act on the BHT’s prediction. We can solve this by using a two-entry Branch

Target Buffer (BTB).

The new pipeline is shown below. For this question, we have removed the BHT and will only

be using the BTB.

The BTB has been added in the Fetch Stage. The BTB is indexed by the PC register in the Fetch

Stage. Branch address calculation has been moved back to the Execute Stage.

On a branch mis-prediction, (1) the branch comparison logic in the Execute Stage detects the

mis-predict, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the

correct branch target (br_correct).

Remember the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a

prediction (has a matching and valid entry for the current PC) or the branch logic in the Execute

Stage corrects for a branch mis-prediction (br_correct).

Using the code segment below (the exact same code from 3.B), fill in the following pipeline

diagram. Upon entrance to this code segment, the register x2 is initialized to 1, while the

register x3 is initialized to 2.

0x2000: lw x7, 0(x6)

0x2004: addi x2, x2, 1

0x2008: bne x2, x3, 0x2000

0x200c: sw x7, 0(x6)

0x2010: add x5, x5, x4

0x2014: sub x7, x5, x7

Initially, the BTB contains:

(For simplicity, the tag is 32 bits, and we match the entire 32-bit PC register in the Decode

Stage to verify a match). It is okay if you do not use the entire table.

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 lw F D X M W

0x2004 addi F D X M W

0x2008 bne F D X M W

0x2000 lw F D - - -

0x2004 addi F - - - -

0x200C sw F D X M W

0x2010 add F D X M W

0x2014 and F D X M W

Problem 4: Load/Store Speculation

A) Suppose we want to execute stores out-of-order. Could there be an issue if we allow stores to

write to the cache even when there are uncommitted instructions before them in program order?

Yes, executing stores ahead of other instructions and writing to the cache before commit can

lead to the following issues.

1. Imprecise exceptions: If an instruction before the store in program order has an exception,

you have to roll back the architectural state. This is hard to do if you’ve already modified

the cache contents. The same is true if the store is the result of a mispredicted branch.

2. Memory ordering: If there are load or store instructions to the same address before the

completed store in program order, writing to the cache on completion will change the

program’s behavior from what would happen if executed in-order.

B) Suppose we bypass load values from a speculative store buffer. If the load address hits in both

the store buffer and the cache, which one should we use: the data forwarded from the store

buffer or the data from the cache?

If the store buffer hit corresponds to a store instruction that comes before the load in program

order, we should take the store buffer data. If the store instruction comes after the load

instruction in program order, we should take the cache data.

C) Suppose that we want loads and stores to execute out-of-order with respect to each other. Under

what circumstances in the code below can we execute instruction 5 before executing any

others? Assume this datapath implements register renaming.

1. add x1, x1, x2

2. sw x5, (x2)

3. lw x6, (x8)

4. sw x5, (x6)

5. lw x8, (x3)

6. add x8, x8, x8

We can only execute instruction 5 before the others if the address it is loading from does not

overlap the addresses being stored to in instructions 2 and 4. So |x2 – x3| ≥ 4 and |x6 – x3| ≥ 4.

D) Under what circumstances can we execute instruction 4 in the code above before executing any

others?

Instruction 4 has a RAW hazard with instruction 3 because it depends on the value of register

x6 that is being loaded by instruction 3. Therefore, it cannot execute first. It does not have any

dependencies on any other instruction, since stores do not change architectural state until they

are committed, so it can execute as soon as instruction 3 completes.

E) Now assume that we execute instruction 5 before all other instructions, but instruction 5 causes

an exception (e.g., page fault). We want to provide precise exceptions in this processor. What

happens with instructions 1, 2, 3, 4, and 6 before execution switches to the OS handler? What

should happen if instructions, 1, 2, 3, or 4 also raise an exception?

To provide precise exceptions, we have to execute and commit all instructions prior to

instruction 5 before switching to the OS handler. Instruction 6 must be killed (thus not commit)

because it’s after 5. If instructions 1, 2, 3, or 4 also raise an exception, the earliest instruction to

have an exception should take precedent, and all later instructions should be flushed from the

pipeline.

F) How can we always be able to execute loads and stores out of order before their addresses are

known? What is the downside and how is it handled? Specifically, assume that we executed

instruction 5 before instruction 4, but then realized that |x6 – x3| < 4.

We can speculatively assume that addresses of all loads and stores are non-overlapping and

issue them before knowing their addresses. Once addresses become known, if we realize that

we shouldn’t have reordered some loads and stores, we have to terminate the ones we shouldn’t

have executed as well as any further instructions that depend on them. In the example, we have

to terminate instruction 5 as well as 6 once we figure out that |x6- x3| < 4. Once instruction 4

completes, we then re-execute instructions 5 and 6.

Problem 5: Branch Predictor Accuracy

For this problem, we are interested in the following code:

int array[N] = {…};

for (int i = 0; i < N; i++)

 if (array[i] != 0)

 array[i]++;

Using the compiler, we get:

 li a0, N

 la a1, array

loop:

 lw a2, 0(a1)

 beqz a2, endif

 addi a2, a2, 1

 sw a2, 0(a1)

endif:

 addi a0, a0, -1

 addi a1, a1, 4

 bnez a0, loop

A) Full BHT

The processor that this code runs on uses a 512-entry branch history table (BHT), indexed by

PC [10:2]. Each entry in the BHT contains a 2-bit counter, initialized to the 01 state.

Each 2-bit counter works as follows: the state of the 2-bit counter decides whether the branch is

predicted taken or not taken, as shown in the table below. If the branch is actually taken, the

counter is incremented (e.g., state 00 becomes state 01). If the branch is not taken, the counter is

decremented. The counter saturates at 00 and 11 (a not-taken branch while in the 00 state keeps

the 2-bit counter in the 00 state).

State Prediction

00 Not taken

01 Not taken

10 Taken

11 Taken

If array = {1, 0, 0, -4, 0}, what is the prediction accuracy for the two branches found in the

above code for five iterations of the loop, using the 512-entry BHT described above?

The five invocations of the loop branch are shown below. Accuracy: 3/5

State Prediction Actual

01 Not taken Taken

10 Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Not taken

The five invocations of the if branch are shown below: Accuracy: 1/5

State Prediction Actual

01 Not taken Not taken

00 Not taken Taken

01 Not taken Taken

10 Taken Not taken

01 Not taken Taken

B) Small BHT

Now consider a BHT with only a single entry. That is, both branches will share the same

counter. Now what will the prediction accuracy be for each branch? Assume we are using the

same array, {1, 0, 0, -4, 0}.

The ten branch invocations are shown below. The loop branch has 3/5 accuracy, and the if

branch had 3/5 accuracy.

Branch State Prediction Actual

if0 01 Not taken Not taken

loop0 00 Not taken Taken

if1 01 Not taken Taken

loop1 10 Taken Taken

if2 11 Taken Taken

loop2 11 Taken Taken

if3 11 Taken Not taken

loop3 10 Taken Taken

if4 11 Taken Taken

loop4 11 Taken Not taken

C) Static Hints

For this question, assume that the compiler can specify statically which way the processor

should predict the branch will go. If the processor sees a "branch-likely" hint from the compiler,

it predicts the branch is taken and does NOT update the BHT with this branch (i.e., any

branches the compiler can analyze do not pollute the BHT).

Which branches in the program, if any, should the compiler provide hints for? Assume the input

array for the compiler's test runs varies widely and the compiler must be fairly confident in the

accuracy of a static branch hint.

The compiler can statically hint that the loop branch will be taken, since we know it will be

taken more often than not. We should not add static hints for the if branch, because this branch

depends on the data.

