

CS152 Computer Architecture and

Engineering

Memory Consistency, Cache Coherence,

and Synchronization Primitives

Assigned

04/22/2024
Problem Set #5, Version (1.0)

Due April 29

@ 11:59:59PT

http://inst.eecs.berkeley.edu/~cs152/sp24

The problem sets are intended to help you learn the material, and we encourage you to collaborate

with other students and to ask questions in discussion sections and office hours to understand the

problems. However, each student must turn in their own solution to the problems.

The problem sets also provide essential background material for the exam and the midterms. The

problem sets will be graded primarily on a completion basis, but with a few problems graded for

correctness to reward earnest engagement. But if you do not work through the problem sets

yourself you are unlikely to succeed on the exam or midterms!

We will distribute solutions to the problem set after the deadline to give you feedback.

Assignments must be submitted through Gradescope by 11:59:59pm PT on the specified due date.

Box/clearly mark all solutions that don’t involve filling in a figure/table. Only boxed/clearly

marked solutions and filled in figures/tables will be considered for grading. See the course website

for the policy on slip days (late submissions).

Name: ___

SID: ___

Collaborators (Name, SID):

__

http://inst.eecs.berkeley.edu/~cs152/sp24
https://www.gradescope.com/courses/703789
https://inst.eecs.berkeley.edu/~cs152/sp24/152_policies/#slip-days

Problem 1: Sequential Consistency

For this problem we will be using the following sequences of instructions. These are small

programs, each executed on a different processor, each with its own cache and register set. In the

following R is a register and X is a memory location. Each instruction has been named (e.g., B3)

to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C

A1: ST X, 2 B1: R := LD X C1: ST X, 7

A2: R := LD X B2: R := ADD R, 1 C2: R := LD X

A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R

A4: ST X, R B4: R:= LD X C4: ST X, R

 B5: R := ADD R, R

 B6: ST X, R

For each of the questions below, please circle the answer and provide a short explanation assuming

the program is executing under the SC model. No points will be given for just circling an

answer!

Problem 1.A

Can X hold value of 8 after all three threads have completed? Please explain briefly.

Yes / No

Problem 1.B

Can X hold value of 9 after all three threads have completed?

Yes / No

Problem 1.C

Can X hold value of 10 after all three threads have completed?

Yes / No

Problem 1.D

For this particular program, can a processor that reorders instructions but follows local

dependencies produce an answer that cannot be produced under the SC model?

Yes / No

Problem 2 (OPTIONAL): Synchronization Primitives

One of the common instruction sequences used for synchronizing several processors are the LOAD

RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair). The LdR

instruction reads a value from the specified address and sets a local reservation for the address.

The StC attempts to write to the specified address provided the local reservation for the address is

still held. If the reservation has been cleared the StC fails and informs the CPU.

Problem 2.A

Describe under what events the local reservation for an address must be cleared.

Problem 2.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,

unaware of the addition of these new instructions? Explain.

Problem 2.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-modify

instructions such as the TEST&SET instruction.

Problem 3: Relaxed Memory Models

The following code implements a seqlock, which is a reader-writer lock that supports a single

writer and multiple readers. The writer never has to wait to update the data protected by the

lock, but readers may have to wait if the writer is busy. We use a seqlock to protect a variable

that holds the current time. The lock is necessary because the variable is 64 bits and thus cannot

be read or written atomically on a 32-bit system.

The seqlock is implemented using a sequence number, seqno, which is initially zero. The writer

begins by incrementing seqno. It then writes the new time value, which is split into the 32-bit

values time_lo and time_hi. Finally, it increments seqno again. Thus, if and only if seqno is odd,

the writer is currently updating the counter.

The reader begins by waiting until seqno is even. It then reads time_lo and time_hi. Finally, it

reads seqno again. If seqno didn't change from the first read, then the read was successful;

otherwise, the read is retried.

This code is correct on a sequentially consistent system, but on a system with a fully relaxed
memory model it may not be. Insert the minimum number of memory fences to make the code
correct on a system with a relaxed memory model. To insert a fence, write the needed fence

(MembarLL, MembarLS, MembarSL, MembarSS) in between the lines of code below.

Writer Reader

LOAD Rseqno,(seqno)

ADD Rseqno, Rseqno, 1

STORE (seqno), Rseqno

STORE (time_lo), Rtime_lo

STORE (time_hi), Rtime_hi

ADD Rseqno, Rseqno, 1

STORE (seqno), Rseqno

Loop:

 LOAD Rseqno_before, (seqno)

 IF(Rseqno_before & 1)

 goto Loop

 LOAD Rtime_lo, (time_lo)

 LOAD Rtime_hi, (time_hi)

 LOAD Rseqno_after, (seqno)

 IF(Rseqno_before !=
Rseqno_after)

 goto Loop

Problem 4 (OPTIONAL): Locking Performance

While analyzing some code, you find that a big performance bottleneck involves many threads

trying to acquire a single lock.

Conceptually, the code is as follows:

int mutex = 0;

while(true)
{

noncritical_code();

lock(&mutex);
critical_code();
unlock(&mutex);

}

Assume for all questions that our processor is using a directory protocol, as described in Handout
#6.

Test&Set Implementation

First, we will use the atomic instruction test_and_set to implement the

lock(mutex) and unlock(mutex) functions.

In C, the instruction has the following function prototype:

int return_value = test_and_set(int* maddr);

Recall that test_and_set atomically reads the memory address maddr and writes a 1

to the location, returning the original value.

Using test_and_set, we arrive at the following first-draft implementation for the

lock() and unlock() functions:

void inline lock(int* mutex_ptr)
{

while(test_and_set(mutex_ptr) == 1);
}

void inline unlock(int* mutex_ptr)
{

*mutex_ptr = 0;
}

Problem 4.A Test&Set, The Initial Acquire

Let us analyze the behavior of Test&Set while running 1,000 threads on 1,000 cores.

Consider the following scenario: At the start of the program, the lock is invalid in all caches.

Then, every thread executes Test&Set once. The first thread wins the lock, while the other

threads will find that the lock is taken. How many invalidation messages must be sent when all

1,000 threads execute Test&Set once?

Invalidations _______

Problem 4.B Test&Set, Spinning

While the first thread is in the critical section (the “winning thread”), the remaining threads

continue to execute Test&Set, attempting to acquire the lock. Each waiting thread is able to

execute Test&Set five times before the winning thread frees the lock. How many

invalidation messages must be sent while the winning thread was executing the critical section?

Invalidations _______

Problem 4.C Test&Set, Freeing the Lock

How many invalidation messages must be sent when the winning thread frees the lock? Assume

the critical section is very long, and all 999 other threads have been waiting to acquire the lock.

Invalidations _______

Test&Test&Set Implementation
Since our analysis from the previous parts show that a lot of invalidation messages must be sent
while waiting for the lock to be freed, let us instead use a regular load alongside the atomic
instruction test&set to implement the mutex lock.

void inline lock(int* mutex_ptr)
{

while((*mutex_ptr == 1) || test&set(mutex_ptr) == 1);
}

void inline unlock(int* mutex_ptr)
{

*mutex_ptr = 0;
}

(Note: the loop evaluation is short-circuited if the first part is true; thus, test&set is only

executed if (*mutex_ptr) does not equal 1).

Problem 4.D Test&Set&Set, The Initial Acquire

Let us analyze the behavior of Test&Test&Set while running 1,000 threads on 1,000 cores.

Consider the following scenario: At the start of the program, the lock is invalid in all caches.

Then every thread performs the first Test (reading mutex_ptr) once. After every thread has

performed the first Test (which evaluates to False, because mutex == 0), each thread then

executes the atomic Test&Set once. Naturally, only one thread wins the lock. How many

invalidation messages must be sent in this scenario?

Invalidations _______

Problem 4.E Test&Set&Set, Spinning

While the first thread is in the critical section, the remaining threads continue to execute

Test&Test&Set. Each waiting thread is able to execute Test&Test&Set five times

before the winning thread frees the lock. How many invalidation messages must be sent while

the winning thread was executing the critical section?

Invalidations _______

Problem 4.F Test&Set&Set, Freeing the Lock

How many invalidation messages must be sent when the winning thread frees the lock for the

Test&Test&Set implementation? Assume the critical section is very long, and all 999

other threads have been waiting to acquire the lock.

Invalidations _______

Problem 5: Directory-based Cache Coherence Update Protocols

Please refer to Handout #6 (on website) for this problem.

In Handout #6, we examine a cache-coherent distributed shared memory system. Ben wants to

convert the directory-based invalidate cache coherence protocol from the handout into an update

protocol. He proposes the following scheme.

Caches are write-through, not write allocate. When a processor wants to write to a memory

location, it sends a WriteReq to the memory, along with the data word that it wants written. The

memory processor updates the memory and sends an UpdateReq with the new data to each of the

sites caching the block, unless that site is the processor performing the store, in which case it sends

a WriteRep containing the new data.

If the processor performing the store is caching the block being written, it must wait for the reply

from the home site to arrive before storing the new value into its cache. If the processor performing

the store is not caching the block being written, it can proceed after issuing the
WriteReq.

Ben wants his protocol to perform well, and so he also proposes to implement silent drops. When

a cache line needs to be evicted, it is silently evicted and the memory processor is not notified of

this event.

Note that WriteReq and UpdateReq contain data at the word-granularity, and not at the block-

granularity. Also note that in the proposed scheme, memory will always have the most up-to-date

data and the state C-exclusive is no longer used.

As in the lecture, the interconnection network guarantees that message-passing is reliable, and free

from deadlock, livelock, and starvation. Also as in the lecture, message-passing is FIFO, meaning;

each home site keeps a FIFO queue of incoming requests and processes them in the order received.

Problem 5.A Sequential Consistency

Alyssa claims that Ben’s protocol does not preserve sequential consistency because it allows two

processors to observe stores in different orders. Describe a scenario in which this problem can

occur.

Problem 5.B State Transitions

Noting that many commercial systems do not guarantee sequential consistency, Ben decides to

implement his protocol anyway. Fill in the following state transition tables (Table P5.5-1 and Table

P5.5-2) for the proposed scheme. (Note: the tables do not contain all the transitions for the

protocol).

No. Current State Event Received Next State Action

1 C-nothing Load C-transient ShReq(id, Home, a)

2 C-nothing Store

3 C-nothing UpdateReq

4 C-shared Load C-shared processor reads cache

5 C-shared Store

6 C-shared UpdateReq

7 C-shared (Silent drop) Nothing

8 C-transient ShRep data → cache, processor reads cache

9 C-transient WriteRep

10 C-transient UpdateReq

 Table P5.5-1: Cache State Transitions

No. Current State Message Next State Action

 Received

1 R(dir) & id dir ShReq R(dir + {id}) ShRep(Home, id, a)

2 R(dir) & id dir WriteReq

3 R(dir) & id dir ShReq ShRep(Home, id, a)

4 R(dir) & id dir WriteReq

 Table P5.5-2: Home Directory State Transitions (N = “is not in”)

Problem 5.C UpdateReq

After running a system with this protocol for a long time, Ben finds that the network is flooded

with UpdateReqs. Alyssa says this is a bug in his protocol. What is the problem and how can you

fix it?

Problem 5.D FIFO Assumption

FIFO message passing is a necessary assumption for the correctness of the protocol. If the network

were non-FIFO, it becomes possible for a processor to never see the result of another processor’s

store. Describe a scenario in which this problem can occur.

Problem 6: Snoopy Cache Coherent Shared Memory

Please refer to Handout #7 (on website) for this problem.

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout

#7. The following questions are to help you check your understanding of the coherence protocol.

You do not need to answer these for credit.

• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the

actions that must be taken by memory and by the different caches involved.
• Explain why WR is not snooped on the bus.
• Explain the I/O coherence problem that CWI helps avoid.

Problem 6.A Where in the Memory System is the Current Value

In Table P5.6-1, P5.6-2, and P5.6-3, column 1 indicates the initial state of a certain address X in a

cache. Column 2 indicates whether address X is currently cached in any other cache. (The “cached”

information is known to the cache controller only immediately following a bus transaction. Thus,

the action taken by the cache controller must be independent of this signal, but state transition

could depend on this knowledge.) Column 3 enumerates all the available operations on address X,

either issued by the CPU (read, write), snooped on the bus (CR, CRI, CI. etc), or initiated by the

cache itself (replacement). Some state-operation combinations are impossible; you should mark

them as such. (See the first table for examples). In columns 6, 7, and 8 (corresponding to this

cache, other caches and memory, respectively), check all possible locations where up-to-date

copies of this data block could exist after the operation in column 3 has taken place and ignore

column 4 and 5 for now. Table P5.6-1 has been completed for you. Make sure the answers in this

table make sense to you.

Problem 6.B MBus Cache Block State Transition Table

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, fill

in the resulting state after the operation in column 3 has taken place. In column 4, list the necessary

MBus transactions that are issued by the cache as part of the transition. Remember, the protocol

should be optimized such that data is supplied using CCI whenever possible, and only the cache

that owns a line should issue CCI.

initial state other ops actions by this final this other mem

 cached cache state cache caches

Invalid no none none I yes

 CPU read CR CE yes yes

 CPU write CRI OE yes

 replace none impossible

 CR none I yes yes

 CRI none I yes

 CI none impossible

 WR none impossible

 CWI none I yes

Invalid yes none I yes yes

 CPU read CS yes yes yes

 CPU write

same

OE yes

 replace impossible

 CR as I yes yes

 CRI above I yes

 CI I yes

 WR I yes yes

 CWI I yes

initial state other ops Actions by this final this other mem

 cached cache state cache caches

cleanExclusive no none none CE

 CPU read

 CPU write

 replace

 CR CS

 CRI

 CI

 WR

 CWI

Table P5.7-1

initial state other ops Actions by this final this other mem

 cached cache state cache caches

ownedExclusive no none none OE

 CPU read

 CPU write

 replace

 CR OS

 CRI

 CI

 WR

 CWI

initial state other ops actions by this final this other mem

 cached cache state cache caches

cleanShared no none none CS

 CPU read

 CPU write

 replace

 CR

 CRI

 CI

 WR

 CWI

cleanShared yes none

 CPU read

 CPU write

same

 replace

 CR as

 CRI above

 CI

 WR

 CWI

Table P5.7-2

initial state other ops actions by this final this other mem

 cached cache state cache caches

ownedShared no none none OS

 CPU read

 CPU write

 replace

 CR

 CRI

 CI

 WR

 CWI

ownedShared yes none

 CPU read

 CPU write

same

 replace

 CR as

 CRI above

 CI

 WR

 CWI

Table P5.7-3

