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Problem 1: Sequential Consistency 

 
For this problem we will be using the following sequences of instructions. These are small 

programs, each executed on a different processor, each with its own cache and register set. In the 

following R is a register and X is a memory location. Each instruction has been named (e.g., B3) 

to make it easy to write answers. 
 
Assume data in location X is initially 0. 

 

Processor A Processor B Processor C 

A1: ST X, 2 B1: R := LD X C1: ST X, 7 

A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 

A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 

A4: ST X, R B4: R:= LD X C4: ST X, R 

 B5: R := ADD R, R  

 B6: ST X, R  
 

 

For each of the questions below, please circle the answer and provide a short explanation assuming 

the program is executing under the SC model. No points will be given for just circling an 

answer! 
 

 

Problem 1.A 

 

Can X hold value of 8 after all three threads have completed? Please explain briefly. 

 

Yes / No 
 
 
 
 
 
 
 
 

 

Problem 1.B 

 

Can X hold value of 9 after all three threads have completed? 

 

Yes / No



 

 

 

Problem 1.C 

 

Can X hold value of 10 after all three threads have completed? 

 

Yes / No 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 1.D 

 

For this particular program, can a processor that reorders instructions but follows local 

dependencies produce an answer that cannot be produced under the SC model?  
 
Yes / No



 

 

 

Problem 2 (OPTIONAL): Synchronization Primitives 

 
One of the common instruction sequences used for synchronizing several processors are the LOAD 

RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair). The LdR 

instruction reads a value from the specified address and sets a local reservation for the address. 

The StC attempts to write to the specified address provided the local reservation for the address is 

still held. If the reservation has been cleared the StC fails and informs the CPU. 
 

 

Problem 2.A 

 

Describe under what events the local reservation for an address must be cleared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 2.B 

 

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 

unaware of the addition of these new instructions? Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Problem 2.C 

 

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-modify 

instructions such as the TEST&SET instruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Problem 3: Relaxed Memory Models 

 
The following code implements a seqlock, which is a reader-writer lock that supports a single 

writer and multiple readers. The writer never has to wait to update the data protected by the 

lock, but readers may have to wait if the writer is busy. We use a seqlock to protect a variable 

that holds the current time. The lock is necessary because the variable is 64 bits and thus cannot 

be read or written atomically on a 32-bit system. 
 
The seqlock is implemented using a sequence number, seqno, which is initially zero. The writer 

begins by incrementing seqno. It then writes the new time value, which is split into the 32-bit 

values time_lo and time_hi. Finally, it increments seqno again. Thus, if and only if seqno is odd, 

the writer is currently updating the counter. 
 
The reader begins by waiting until seqno is even. It then reads time_lo and time_hi. Finally, it 

reads seqno again. If seqno didn't change from the first read, then the read was successful; 

otherwise, the read is retried. 
 
This code is correct on a sequentially consistent system, but on a system with a fully relaxed 
memory model it may not be. Insert the minimum number of memory fences to make the code 
correct on a system with a relaxed memory model. To insert a fence, write the needed fence 

(MembarLL, MembarLS, MembarSL, MembarSS) in between the lines of code below. 
 

Writer Reader 

LOAD  Rseqno,(seqno) 

 
ADD  Rseqno, Rseqno, 1 

 
STORE  (seqno), Rseqno 

 

STORE  (time_lo), Rtime_lo 

 
STORE  (time_hi), Rtime_hi 

 
ADD  Rseqno, Rseqno, 1 

 

STORE  (seqno), Rseqno 

Loop: 

 LOAD Rseqno_before, (seqno) 
 

 IF(Rseqno_before & 1) 

  goto Loop 
 

 LOAD Rtime_lo, (time_lo) 
 

 LOAD Rtime_hi, (time_hi) 
 

 LOAD Rseqno_after, (seqno) 
 

 IF(Rseqno_before != 
Rseqno_after) 
 
  goto Loop 

 

 



 

 

Problem 4 (OPTIONAL): Locking Performance 

 
While analyzing some code, you find that a big performance bottleneck involves many threads 

trying to acquire a single lock. 
 
Conceptually, the code is as follows: 
 
int mutex = 0; 

 

while( true ) 
{ 

noncritical_code( ); 

 
lock( &mutex ); 
critical_code( ); 
unlock( &mutex ); 

}  
 
Assume for all questions that our processor is using a directory protocol, as described in Handout 
#6. 
 

 

Test&Set Implementation 

 
First, we will use the atomic instruction test_and_set to implement the 

lock(mutex) and unlock(mutex) functions. 
 
In C, the instruction has the following function prototype: 

 
int return_value = test_and_set(int* maddr); 

 

Recall that test_and_set atomically reads the memory address maddr and writes a 1 

to the location, returning the original value. 
 
Using test_and_set, we arrive at the following first-draft implementation for the 

lock() and unlock() functions: 
 
void inline lock(int* mutex_ptr) 
{ 

while(test_and_set(mutex_ptr) == 1); 
} 

 

void inline unlock(int* mutex_ptr) 
{ 

*mutex_ptr = 0; 
}



 

 

Problem 4.A Test&Set, The Initial Acquire 

 

Let us analyze the behavior of Test&Set while running 1,000 threads on 1,000 cores. 

 

Consider the following scenario: At the start of the program, the lock is invalid in all caches. 

Then, every thread executes Test&Set once. The first thread wins the lock, while the other 

threads will find that the lock is taken. How many invalidation messages must be sent when all 

1,000 threads execute Test&Set once? 

 
 
 
 
 

 

Invalidations _______ 

 

 

Problem 4.B Test&Set, Spinning 

 

While the first thread is in the critical section (the “winning thread”), the remaining threads 

continue to execute Test&Set, attempting to acquire the lock. Each waiting thread is able to 

execute Test&Set five times before the winning thread frees the lock. How many 

invalidation messages must be sent while the winning thread was executing the critical section? 
 
 
 
 
 
 

Invalidations _______ 

 

 

 

Problem 4.C Test&Set, Freeing the Lock 

 

How many invalidation messages must be sent when the winning thread frees the lock? Assume 

the critical section is very long, and all 999 other threads have been waiting to acquire the lock.  
 
 
 
 
 
 
 
 

Invalidations _______



 

 

Test&Test&Set Implementation  
Since our analysis from the previous parts show that a lot of invalidation messages must be sent 
while waiting for the lock to be freed, let us instead use a regular load alongside the atomic 
instruction test&set to implement the mutex lock.  
 
void inline lock(int* mutex_ptr) 
{ 

while((*mutex_ptr == 1) || test&set(mutex_ptr) == 1); 
} 

 

void inline unlock(int* mutex_ptr) 
{ 

*mutex_ptr = 0; 
} 
  
(Note: the loop evaluation is short-circuited if the first part is true; thus, test&set is only 

executed if (*mutex_ptr) does not equal 1). 

 

Problem 4.D Test&Set&Set, The Initial Acquire 

 

Let us analyze the behavior of Test&Test&Set while running 1,000 threads on 1,000 cores. 

 

Consider the following scenario: At the start of the program, the lock is invalid in all caches. 

Then every thread performs the first Test (reading mutex_ptr) once. After every thread has 

performed the first Test (which evaluates to False, because mutex == 0), each thread then 

executes the atomic Test&Set once. Naturally, only one thread wins the lock. How many 

invalidation messages must be sent in this scenario? 

 

Invalidations _______ 
  

Problem 4.E Test&Set&Set, Spinning 

 

While the first thread is in the critical section, the remaining threads continue to execute 

Test&Test&Set. Each waiting thread is able to execute Test&Test&Set five times 

before the winning thread frees the lock. How many invalidation messages must be sent while 

the winning thread was executing the critical section? 
 
 

Invalidations _______ 
  

Problem 4.F Test&Set&Set, Freeing the Lock 

 

How many invalidation messages must be sent when the winning thread frees the lock for the 

Test&Test&Set implementation? Assume the critical section is very long, and all 999 

other threads have been waiting to acquire the lock. 
 
 

Invalidations _______



 

 

Problem 5: Directory-based Cache Coherence Update Protocols 

 
Please refer to Handout #6 (on website) for this problem. 

In Handout #6, we examine a cache-coherent distributed shared memory system. Ben wants to 

convert the directory-based invalidate cache coherence protocol from the handout into an update 

protocol. He proposes the following scheme. 
 
Caches are write-through, not write allocate. When a processor wants to write to a memory 

location, it sends a WriteReq to the memory, along with the data word that it wants written. The 

memory processor updates the memory and sends an UpdateReq with the new data to each of the 

sites caching the block, unless that site is the processor performing the store, in which case it sends 

a WriteRep containing the new data. 
 

If the processor performing the store is caching the block being written, it must wait for the reply 

from the home site to arrive before storing the new value into its cache. If the processor performing 

the store is not caching the block being written, it can proceed after issuing the  
WriteReq. 
 

Ben wants his protocol to perform well, and so he also proposes to implement silent drops. When 

a cache line needs to be evicted, it is silently evicted and the memory processor is not notified of 

this event. 
 
Note that WriteReq and UpdateReq contain data at the word-granularity, and not at the block-

granularity. Also note that in the proposed scheme, memory will always have the most up-to-date 

data and the state C-exclusive is no longer used. 
 
As in the lecture, the interconnection network guarantees that message-passing is reliable, and free 

from deadlock, livelock, and starvation. Also as in the lecture, message-passing is FIFO, meaning; 

each home site keeps a FIFO queue of incoming requests and processes them in the order received. 
 
Problem 5.A Sequential Consistency 

 

Alyssa claims that Ben’s protocol does not preserve sequential consistency because it allows two 

processors to observe stores in different orders. Describe a scenario in which this problem can 

occur.



 

 

 

Problem 5.B State Transitions 

 

Noting that many commercial systems do not guarantee sequential consistency, Ben decides to 

implement his protocol anyway. Fill in the following state transition tables (Table P5.5-1 and Table 

P5.5-2) for the proposed scheme. (Note: the tables do not contain all the transitions for the 

protocol). 
 
No. Current State Event Received Next State Action 

1 C-nothing Load C-transient ShReq(id, Home, a) 

2 C-nothing Store   

3 C-nothing UpdateReq   

4 C-shared Load C-shared processor reads cache 

5 C-shared Store   

6 C-shared UpdateReq   

7 C-shared (Silent drop)  Nothing 

8 C-transient ShRep  data → cache, processor reads cache 

9 C-transient WriteRep   

10 C-transient UpdateReq   

   Table P5.5-1: Cache State Transitions 

No. Current State  Message Next State Action 

   Received   

1 R(dir) & id  dir ShReq R(dir + {id}) ShRep(Home, id, a) 

2 R(dir) & id  dir WriteReq   

3 R(dir) & id  dir ShReq  ShRep(Home, id, a) 

4 R(dir) & id  dir WriteReq   

   Table P5.5-2: Home Directory State Transitions (N = “is not in”) 



 

 

 

Problem 5.C UpdateReq 

 

After running a system with this protocol for a long time, Ben finds that the network is flooded 

with UpdateReqs. Alyssa says this is a bug in his protocol. What is the problem and how can you 

fix it? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 5.D FIFO Assumption 

 

FIFO message passing is a necessary assumption for the correctness of the protocol. If the network 

were non-FIFO, it becomes possible for a processor to never see the result of another processor’s 

store. Describe a scenario in which this problem can occur. 



 

 

 

Problem 6: Snoopy Cache Coherent Shared Memory 

 
Please refer to Handout #7 (on website) for this problem. 

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout 

#7. The following questions are to help you check your understanding of the coherence protocol. 

You do not need to answer these for credit. 

 

• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the 

actions that must be taken by memory and by the different caches involved. 
• Explain why WR is not snooped on the bus. 
• Explain the I/O coherence problem that CWI helps avoid. 
 

 

Problem 6.A Where in the Memory System is the Current Value 

 

In Table P5.6-1, P5.6-2, and P5.6-3, column 1 indicates the initial state of a certain address X in a 

cache. Column 2 indicates whether address X is currently cached in any other cache. (The “cached” 

information is known to the cache controller only immediately following a bus transaction. Thus, 

the action taken by the cache controller must be independent of this signal, but state transition 

could depend on this knowledge.) Column 3 enumerates all the available operations on address X, 

either issued by the CPU (read, write), snooped on the bus (CR, CRI, CI. etc), or initiated by the 

cache itself (replacement). Some state-operation combinations are impossible; you should mark 

them as such. (See the first table for examples). In columns 6, 7, and 8 (corresponding to this 

cache, other caches and memory, respectively), check all possible locations where up-to-date 

copies of this data block could exist after the operation in column 3 has taken place and ignore 

column 4 and 5 for now. Table P5.6-1 has been completed for you. Make sure the answers in this 

table make sense to you. 
 
 
 
 
 

Problem 6.B MBus Cache Block State Transition Table 

 

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, fill 

in the resulting state after the operation in column 3 has taken place. In column 4, list the necessary 

MBus transactions that are issued by the cache as part of the transition. Remember, the protocol 

should be optimized such that data is supplied using CCI whenever possible, and only the cache 

that owns a line should issue CCI. 
 
 
 
 
 
 
 
 
 



 

 

initial state other ops actions by this final this other mem 
 

 cached  cache state cache caches  
 

Invalid no none none I   yes 
 

  CPU read CR CE yes  yes 
 

  CPU write CRI OE yes   
 

  replace none  impossible  
 

  CR none I  yes yes 
 

  CRI none I  yes  
 

  CI none  impossible  
 

  WR none  impossible  
 

  CWI none I   yes 
 

Invalid yes none  I  yes yes 
 

  CPU read  CS yes yes yes 
 

  CPU write 

same 

OE yes   
 

  replace  impossible  
 

  CR as I  yes yes 
 

  CRI above I  yes  
 

  CI  I  yes  
 

  WR  I  yes yes 
 

  CWI  I   yes 
 

        
 

initial state other ops Actions by this final this other mem 
 

 cached  cache state cache caches  
 

cleanExclusive no none none CE    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR  CS    
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

Table P5.7-1 
  



 

 

initial state other ops Actions by this final this other mem 
 

 cached  cache state cache caches  
 

ownedExclusive no none none OE    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR  OS    
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

        
 

initial state other ops actions by this final this other mem 
 

 cached  cache state cache caches  
 

cleanShared no none none CS    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR      
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

cleanShared yes none      
 

  CPU read      
 

  CPU write 

same 

    
 

  replace     
 

  CR as     
 

  CRI above     
 

  CI      
 

  WR      
 

  CWI      
 

Table P5.7-2 
 
  



 

 

initial state other ops actions by this final this other mem 
 

 cached  cache state cache caches  
 

ownedShared no none none OS    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR      
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

ownedShared yes none      
 

  CPU read      
 

  CPU write 

same 

    
 

  replace     
 

  CR as     
 

  CRI above     
 

  CI      
 

  WR      
 

  CWI      
 

Table P5.7-3 

 


