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1 Introduction and Goals 

The goal of this laboratory assignment is to familiarize yourself with the Chipyard simulation 
environment while also allowing you to conduct some simple experiments. By modifying an 
existing instruction tracer script, you will collect instruction mix statistics and make some 
architectural recommendations based on the results. You will be conducting cycle-accurate 
simulations of the “Sodor” instructional cores. These cores were designed to demonstrate basic 
principles of core design. 

This lab consists of two sections: a directed portion and an open-ended portion. Everyone will 
do the directed portion the same way, and grades will be assigned based on correctness. The 
open-ended portion will allow you to pursue more creative investigations, and your grade will be 
based on the effort made to complete the task or the arguments you provide in support of your 
ideas. 

While students are encouraged to discuss solutions to the lab assignments with each other, you 
must complete the directed portion of the lab yourself and submit your own lab report for these 
problems. For the open-ended portion of each lab, students can either work individually or in 
groups of two or three. Each group will turn in a single report for the open-ended portion of the 
lab. You are free to participate in different groups for different lab assignments.  

 
1.1 Graded Items 

All reports are to be submitted through Gradescope. Please label each section of the results 
clearly. All directed items need to be turned in for evaluation. Your group only needs to submit 
one of the problems in the Open-Ended Portion. 

• (Directed) Problem 3.4: recorded instruction mixes for each benchmark and answers 
• (Directed) Problem 3.5: 1-stage CPI analysis answers 
• (Directed) Problem 3.6: 5-stage CPI analysis answers



 

• (Directed) Problem 3.7: design problem answers 
• (Open-ended) Problem 4.1: recorded ratio, answers, and source code 
• (Open-ended) Problem 4.2: data and the modified section of Chisel source code 
• (Open-ended) Problem 4.3: instruction definition, test code, worksheet, modified section 

of Chisel source code 
• (Open-ended) Problem 4.4: design proposal and supporting data 
• (Directed) Problem 5: feedback on this lab 

! → Lab reports must be readable and typed; avoid raw dumps of logfiles. Please limit your directed 

portion submissions to (1) page with 11 pt font or greater, and your open-ended 
portion submissions to (2) pages for individual submissions and (3) pages for 
group submissions with 11 pt font or greater. Charts, tables, and figures – where 
appropriate – are excellent ways to succinctly summarize your data. 

 

2 Background 

2.1 The RISC-V Instruction Set Architecture 
 

The processor cores featured in this lab implement the RISC-V ISA, developed at UC Berkeley 
for use in education, research, and industry [1]. 

! → The RISC-V ISA manual is available under the “Resources” section of the CS 152 webpage or directly 

at https://riscv.org/specifications/. For Lab 1, all processors conform to the 32-bit base ISA, 
known as RV32I. 

Note that the GNU utilities in this lab are prefixed with the target triplet1 (riscv32-unknown-elf) 
but otherwise function similarly as their native binutils and gcc counterparts that may be familiar 
to you. The components most relevant to this lab are: 

• riscv32-unknown-elf-gcc: GNU cross-compiler for C 
• riscv32-unknown-elf-objdump: GNU disassembler for RISC-V machine code 

• spike: Functional ISA simulator which serves as the de-facto golden reference for the RISC-
V ISA. Since it is not a cycle-accurate model, it cannot be relied on for performance 
measurements but can execute software much more quickly than an RTL simulator to 
verify correctness. 

 

2.2 Chipyard 
 

This lab, as well as subsequent CS 152 labs, is based on the Chipyard framework being actively 
developed at UC Berkeley. 

Chipyard is an integrated design, simulation, and implementation framework for agile 
development of systems-on-chip (SoCs). It combines Chisel, the Rocket Chip generator, and 
other Berkeley projects to produce a full-featured RISC-V SoC from a rich library of processor 
cores, accelerators, memory system components, and I/O peripherals. Chipyard supports several 
hardware development flows, including software RTL simulation, FPGA-accelerated simulation 
(FireSim), and automated VLSI methodologies (Hammer). 

! → Chipyard  documentation:   https://chipyard.readthedocs.io/en/latest/ 
 

2.3 Chisel 

Chisel is a hardware design language developed at UC Berkeley that facilitates advanced circuit 
generation and design reuse for digital logic designs. 

 

1 A canonical name for the system type that follows the nomenclature cpu-vendor-os

https://riscv.org/specifications/
https://chipyard.readthedocs.io/en/latest/


 

Chisel adds hardware construction primitives to the Scala programming language, providing 
designers with higher-level features such as object orientation, functional programming, 
parameterized types, and type inference to write complex, parameterizable hardware generators 
that produce synthesizable Verilog. This generator methodology enables the creation of reusable 
components and libraries, raising the level of abstraction in design while retaining fine-grained 
control. A Chisel design is essentially a legal Scala program whose execution emits low-level RTL 
code, which can then be mapped to ASICs, FPGAs, or cycle-accurate software simulators such as 
VCS and Verilator. 

! → Documentation about the Chisel language, along with an interactive bootcamp tutorial, can be 

found at  https://www.chisel-lang.org/. 
 

2.3.1 Chisel in This Lab 

The “Sodor” instructional cores in this lab are implemented using the Chisel HDL according to 
the generator design methodology. In this lab, you will compile these Chisel-based processors 
into software simulators using Verilator and run cycle-accurate experiments on instruction 
mixes and pipeline hazards. Students will not be required to write Chisel code as part of this lab, 
beyond adding and modifying parameters as directed. 

 
3 Directed Portion (30% of lab grade) 

3.1 Terminology and Conventions 

Throughout this course, the term host refers to the machine on which the simulation runs, while 
target refers to the machine being simulated. For this lab, an instructional server will act as the 
host, and the RISC-V processors will be the target machines. Unix shell commands to be run on 

the host are prefixed with the prompt “eecs$”. 

 
3.2 Setup 

To complete this lab, ssh into an instructional server with the instructional computing account 
provided to you.2 The lab infrastructure has been set up to run on the eda-{1..11}.eecs.berkeley.edu 
machines (eda-1.eecs, eda-2.eecs, etc.). Then, run the following commands to set up your scratch 
space, install conda, and build Chipyard. During the bash Miniforge3.sh command, press enter and 
say ‘yes’ when prompted. 

 

eecs$  echo 'source ~/.bashrc' >> ~/.bash_profile 

eecs$  echo 'export ENABLE_SBT_THIN_CLIENT=1' >> ~/.bashrc 

eecs$  mkdir -m 0700 -p /scratch/$USER 

eecs$  cd /scratch/$USER 

eecs$  wget -O Miniforge3.sh "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh" 

eecs$  bash Miniforge3.sh -p "/scratch/${USER}/conda" 

eecs$  source /scratch/${USER}/conda/etc/profile.d/conda.sh 

eecs$  git clone https://github.com/ucb-bar/chipyard  

eecs$  cd chipyard 

eecs$  git checkout main 

eecs$  git reset --hard 150f888 

eecs$  ln -s /home/ff/cs152/sp24/chipyard/.conda-env .conda-env 

eecs$  conda activate .conda-env/ 

eecs$  ./build-setup.sh riscv-tools --skip-conda --skip-toolchain --skip-circt --skip-firesim --skip-marshal 

 
 

 

 

2 Create a CS152-specific instructional account through the WebAcct service: http://inst.eecs.berkeley.edu/webacct

https://www.chisel-lang.org/
http://inst.eecs.berkeley.edu/webacct/


 

 

eecs$  CHIPYARDROOT=$PWD 

eecs$  BMARKS=$CHIPYARDROOT/generators/riscv-sodor/riscv-bmarks 

eecs$  SCRIPTS=$CHIPYARDROOT/generators/riscv-sodor/scripts 

eecs$  source ./env.sh 
 

The build-setup.sh script clones all the git submodules of the various Chipyard components. This 
step is expected to take several minutes. Every time you make a new shell, you will need to source 
env.sh to run Chipyard commands. 

! → It is highly recommended to work in the local /scratch partition to avoid issues with filesystem 

performance and quotas. Even simulations of modest length (few hundred thousand cycles) can 
produce a few gigabytes of logs and waveform dumps. Do not use your NFS home directory to 
avoid slowing down the simulation. Remember that /scratch is not backed up automatically. This 
also requires that you use the same eda machine for the remainder of this lab, as they are local 
to each machine.  

The remainder of this exercise will use ${CHIPYARDROOT} to denote the path of the lab1 working 
tree. Its directory structure is outlined below: 

${CHIPYARDROOT} 

generators/ Chisel source code for cores/caches/peripherals/etc. 

riscv-sodor/ Sodor sources and utilities 

src/main/scala/ 

common/ Common source code shared between all Sodor cores 

rv32_1stage/ Source code for the 1-stage core 

 rv32_2stage/ Source code for the 2-stage core 

 rv32_3stage/ Source code for the 3-stage core 

   rv32_5stage/ Source code for the 5-stage core 

  rv32_ucode/  Source code for the microcoded core 

riscv-bmarks/ Pre-compiled benchmark binaries 

scripts/ Python scripts for analyzing Sodor traces 

test/ 

custom-tests/ Stub for open-ended question 4.3 

 custom-bmarks/ Stub for open-ended question 4.1 

scripts/ Contains repo initialization script 

 sims/ 

verilator/   Verilator simulation directory 

generated-src/ Generated Verilog after Chisel elaboration 

output/  Simulation traces are logged here 

Of note is that the Chisel source code for the processors can be found in 
${CHIPYARDROOT}/generators/riscv-sodor/src/main/scala. While you need not understand the code to do 
this assignment, it may be interesting to examine the internals of a processor. Although it is not 
recommended that you alter any of the processors while collecting data from them in the directed lab 
portion (except as instructed), feel free in your own time (or perhaps as part of the open-ended portion) to 
modify the processors as you see fit.



 

 
 

Figure 1: The simulation environment. The front-end server (fesvr) reads a RISC-V ELF binary from the 

host filesystem, starts the target system simulator, and populates the target system memory with the given 
ELF program segments. Once fesvr finishes loading the binary, it releases the target system from reset, and 
the simulated processor then begins execution at the reset vector PC. Here, the test protocol is the standard 
RISC-V debug module interface [2]. 

 
3.3 First Steps: Building and Simulating the 1-Stage Processor 

The lab repository contains five different cores: 1/2/3/5-stage pipelines and a microcoded pro- 
cessor. 

 
3.3.1 Building the 1-stage Processor 

Run the following commands to build the 1-stage processor: 
 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 
eecs$  make CONFIG=Sodor1StageConfig 

 

 

The first run of sbt may take some time since it must fetch various Scala dependencies. We 
recommend you run this step in tmux or screen, and find something else to do as the simulator 
builds. 5 

! → It is expected that the first invocation of this make command will take > 10 minutes to complete, 

as the framework must compile the Chisel and FIRRTL compilers, all Scala dependencies, and 
Verilator. 

The make command orchestrates the following steps: 

1. Start sbt (the Scala Build Tool), select the Sodor1StageConfig config, and compile and run 
the Chisel code which generates a Verilog RTL description of the processor. The generated 

Verilog code can be found in ${CHIPYARDROOT}/sims/verilator/generated-src. 

2. Run verilator, an open-source tool that converts Verilog into a C++ cycle-accurate sim- 
ulation model. 

3. Compile the Verilator-generated C++ code into an x86 executable. 
 
 
 
 
 
 
 
 
 

 
5 Should you encounter a java.lang.OutOfMemoryError exception, repeat the make command.



 

3.3.2 Simulating the 1-stage Processor 

Run the following commands to run a simulation of the Sodor 1-stage processor running the Towers 
of Hanoi benchmark. 

 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 
eecs$  make CONFIG=Sodor1StageConfig run-binary BINARY=${BMARKS}/towers.riscv 

 

 

The simulation should print the cycle count (mcycle) and instruction count (minstret) upon 

completion. You may want to try running the other benchmarks in riscv-bmarks as well. If any 
benchmarks fail to complete and print mcycle and minstret, verify that you are running on a 
recommended instructional machine. Otherwise, contact your TA. 

 
3.3.3 Building Other Processors 

To select a different processor design point, simply change the CONFIG= key of the make 
command. Valid options are listed in Table 2. 

 
 

Sodor1StageConfig 
Sodor2StageConfig 
Sodor3StageConfig 
Sodor5StageConfig 
SodorUCodeConfig 

 

Table 2: The configs available in this lab. 

 
eecs$  cd ${CHIPYARDROOT}/sims/verilator 
eecs$  make CONFIG=Sodor3StageConfig run-binary BINARY=${BMARKS}/towers.riscv 

 

 

3.3.4 Dumping Waveforms for Debugging 

! → (This information is provided for completeness but is not necessary to complete the lab.) 

In the very unlikely scenario that you need to debug what you suspect to be an RTL bug, VCD- 
formatted waveforms can be obtained by running make run-binary-debug instead of the usual 
make run-binary command. Open the resulting output/*.vcd files in a waveform viewer such as  
GTKWave  (http://gtkwave.sourceforge.net/). 

 

3.4 Tracing Instruction Mixes Using the 1-Stage Processor 

For this section of the lab, you will look at the instruction mixes of several RISC-V benchmark 
programs provided to you. 

 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 

eecs$  make CONFIG=Sodor1StageConfig run-binary BINARY=${BMARKS}/vvadd.riscv 
eecs$  less output/chipyard.harness.TestHarness.Sodor1StageConfig/vvadd.out 

 

 

We have provided a set of benchmarks for you to gather results from: dhrystone, median, 
multiply, qsort, rsort, towers, and vvadd. Using your editor of choice, inspect the output files 
generated by make run-binary after running each of these benchmarks. 

The processor commit state is logged to the output trace file on every cycle. We have provided a

http://gtkwave.sourceforge.net/


 

Python script which analyzes the contents of the omitted trace file and generates basic statistics. 
Run the following command to view the statistics. 

 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 
eecs$  ${SCRIPTS}/tracer.py output/chipyard.harness.TestHarness.Sodor1StageConfig/vvadd.out 

 

 
 

Stats: 

 
CPI :  1.000 
IPC :  1.000 
Cycles :  17429 
Instructions             :  17430 
Bubbles : 0 

 
Instruction Breakdown : 
% Arithmetic :  34.991  % 
% Ld/ St :  34.624  % 
% Branch / Jump      :  24.521 % 
% Misc. :  5.863  % 

 
Note how the mix of different types of instructions vary between benchmarks. Record the mix 
for each benchmark. (Remember: Do not provide raw dumps. A good way to visualize this kind 
of data would be a bar graph.) Which benchmark has the highest arithmetic intensity? Which 
benchmark seems most likely to be memory bound? Which benchmark seems most likely to be 

dependent on branch predictor performance?6 
 

3.5 CPI Analysis Using the 1-Stage Processor 

Consider the results gathered from the RV32 1-stage processor. Suppose you were to design a 
new machine such that the average CPI of loads and stores is 2 cycles, integer arithmetic 
instructions take 1 cycle, and other instructions take 1.5 cycles on average. What is the overall 
CPI of the machine for each benchmark? 

What is the relative performance for each benchmark if loads/stores are sped up to have an 
average CPI of 1? Is this still a worthwhile modification if it means that the cycle time increases 
30%? Is it worthwhile for all benchmarks or only a subset? Explain. 

 
3.6 CPI Analysis Using the 5-Stage Processor 

For this section, we will analyze the effects of branching and bypassing in a 5-stage processor.7 

The 5-stage processor has been parameterized to support both full-bypassed (but must still stall 
for load-use hazards) and fully-interlocked configurations. The fully-interlocked variant 
performs no bypassing and instead must stall (interlock) the instruction fetch and decode stages 
until all hazards have been resolved. 

First, we verify that full bypassing is enabled in the design. Navigate to the Chisel source code: 
 

eecs$  cd ${CHIPYARDROOT}/generators/riscv-sodor/src/main/scala/rv32_5stage 
eecs$  vim consts.scala    # Use any editor of your choice 

 

 

6 The disassembly for all benchmarks is available at ${CHIPYARDROOT}/${BMARKS}/*.dump. 
7 The 2-stage and 3-stage processors will not be explicitly used in this lab, but they exist to demonstrate how pipelining in a 

relatively simple microarchitecture is implemented.



 

The consts.scala file defines constants and compile-time parameters for the processor. Observe 
that the parameter on line 21 is val USE FULL BYPASSING = true. You can see how this parameter 
changes the pipeline by referring to the data path in dpath.scala and the control path in 
cpath.scala. The data path instantiates the bypass muxes when full bypassing is activated. The 
control path contains the stall logic, which must account for more situations when no bypassing 
is selected. 

Like we did for the 1-stage processor, build and run the processor on all provided benchmarks, 
with the default behavior of bypassing enabled. 

 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 

eecs$  make CONFIG=Sodor5StageConfig run-binary BINARY=${BMARKS}/vvadd.riscv 
 

 

Record the CPI values for all benchmarks. Are they what you expected? 

Now disable full bypassing in consts.scala, and re-run the build (check that your Chisel code 
recompiles). Record the new CPI values for all benchmarks. How does full bypassing perform 
compared to full interlocking? If adding full bypassing would hurt the cycle time of the processor 
by 25%, would it be worth it? Argue your case quantitatively. 

 
3.7 Design Problem Using the 5-Stage Processor 

Imagine that you are being asked by your employer to evaluate a potential modification to the 
design of a 5-stage RISC-V pipeline. The proposed modification is that the Execute / Address 
Calculation stage and the Memory Access stage be merged into a single pipeline stage. In this 
combined stage, the ALU and Memory will operate in parallel. Data access instructions will use 
memory while leaving the ALU idle, and arithmetic instructions will use the ALU while leaving 
memory idle. These changes are beneficial in terms of area and power efficiency. Think to 
yourself why this is the case, and if you are still unsure, ask about it in discussion section or office 
hours. 

In RISC-V, the effective address of a load or store is calculated by summing the contents of one 
register (rs1) with an immediate value (imm). 

The problem with the new design is that there is now no way to perform any address calculation 
in the middle of a load or store instruction, since loads and stores do not get to access the ALU. 
Proponents of the new design advocate changing the ISA to allow only one addressing mode: 
register direct addressing. Only one source register is used, and the value it contains is the 
memory address to be accessed. No offset can be specified. 

In RISC-V, the only way to perform register direct addressing register-immediate address 
calculation with imm = 0. 

With the proposed design, any load or store instruction which uses register-immediate 

addressing with imm =/= 0 will take two instructions. First, the register and immediate values 
must be summed with an add instruction, and then this calculated address can be loaded from 
or stored to in the next instruction. Load and store instructions which currently use an offset of 
zero will not require extra instructions on the new design. 

Your job is to determine the percentage increase in the total number of instructions that would 
have to be executed under the new design. This will require a more detailed analysis of the 
different types of loads and stores executed by our benchmark codes. 

In order to track more specific statistics about the instructions being executed, you will need to 
modify the Python script at ${CHIPYARDROOT}/generators/riscv-sodor/scripts/tracer.py. 

Modify the tracer to detect the percentage of instructions that are loads and stores with non-zero



 

offsets. Follow the existing framework in tracer.py to accomplish this task. There is existing code 
which you can adapt for your modifications. 

Consult the RISC-V unprivileged ISA specification (Volume I, found under “Resources” on the 
CS 152 webpage) to determine which instruction bits correspond to which fields. 

After modifying tracer.py, re-run the tracer on the output files to gather results. 
 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 

eecs$  ${SCRIPTS}/tracer.py output/chipyard.harness.TestHarness.Sodor5StageConfig/vvadd.out 
 

 

What percentages of the instruction mix do the various types of load and store instructions make 
up? Evaluate the new design in terms of the percentage increase in the number of instructions 
that will have to be executed. Which design would you advise your employer to adopt? Justify 
your position quantitatively.



 

4 Open-ended Portion (70% of lab grade) 

Select one of the following questions per team. The open-ended portion is worth a large fraction 
of the grade of the lab, and the grade depends on how complex and interesting a project you 
complete, so spend the appropriate amount of time and energy on it. Also, have fun with it! 

 
4.1 Mix Manufacturing 

The goal of this problem is to investigate how effectively (or ineffectively) the compiler might 
handle complicated C code of your creation. 

Using no more than 15 lines of C code, attempt to produce RISC-V machine code with the 
maximum ratio of branch to non-branch instructions when run on the 5-stage processor (fully 

bypassed).8 In other words, try to produce as many branch instructions as possible. You can use 

code that emits jumps, but unconditional jump instructions do not count as branches. Your C 
code can contain as many poor coding practices as you like but must adhere to the following 
criteria: 

• Limit to one statement per line.9 Selection (if, else, switch) and iteration (for, while, do) 
statements each count as one statement in addition to the body. 

• Do not call functions or execute code not contained within the 15-line block. 
• Do not use inline assembly or comma operators. 
• Limit to one ternary operator (?:) per expression. 

• The code must always terminate. 

Write your code in ${CHIPYARDROOT}/generators/riscv-sodor/test/custom-bmarks/mix.c. To 
test for correctness, we can compile and run it on the functional ISA simulator. The build-
custom-bmark.sh script will compile your benchmark, run it on Spike, and produce a 
disassembly of the code for you: 

 

eecs$  cd $CHIPYARDROOT 

eecs$  wget https://raw.githubusercontent.com/ucb-bar/chipyard-cs152-sp23/main/build-custom-bmark.sh 

eecs$  chmod +x build-custom-bmark.sh 

eecs$ sed -i 's/chipyard-cs152-sp23/chipyard/' build-custom-bmark.sh 

eecs$  ./build-custom-bmark.sh 
 

 

However, to obtain a cycle-accurate trace to determine the actual effect of your program on CPI, 
you must run the code on the RV32 5-stage processor (fully bypassed).  

 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 
eecs$  CUSTOM_BMARKS=${CHIPYARDROOT}/generators/riscv-sodor/test/custom-bmarks 
eecs$  make CONFIG=Sodor5StageConfig run-binary BINARY=${CUSTOM_BMARKS}/mix.riscv 

 

 

Analyze output/chipyard.harness.TestHarness.Sodor5StageConfig/mix.out with the tracer.py script 
and report the ratio of branch to non-branch instructions achieved with your code. What is the 
resulting CPI? As more branches were added, did the CPI increase or decrease? Explain why the 
CPI changed in the direction that it did. In your report, summarize some of the ideas that you 
tried. Submit this write-up, your lines of C code, and the excerpt of the disassembly that 
corresponds to your C code. 

 

 
8 Most compiler optimizations are disabled (-O0) to make this exercise easier. 
9 As defined in ISO/IEC 9899 6.8: http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

https://raw.githubusercontent.com/ucb-bar/chipyard-cs152-sp23/main/build-custom-bmark.sh
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf


 

4.2 Bypass Path Analysis 

As an engineer working for a new start-up processor design company, you find yourself 3% over 
budget area-wise on your company’s latest 5-stage processor (your company makes very small 
processors, and every bit of area counts!). However, if you remove one bypass path you can meet 
the budget and ship on time! With the Chisel source code in 

${CHIPYARDROOT}/generators/riscv-sodor/src/main/scala/rv32_5stage, analyze the impact on 

CPI when different bypass paths are removed from the design. The files dpath.scala and 

cpath.scala contain the relevant code for modifying the bypass and stall logic. Ensure that your 
modified pipeline passes all of the assembly tests! 

Use your data to support your conclusion about which bypass path could be eliminated with the 
least impact on CPI. Include snippets of your modified Chisel code in an appendix in your report. 
Feel free to email your TA or attend office hours if you need help understanding Chisel, the 
processor, or anything else regarding this problem. 

 
4.3 Define and Implement Your Favorite Complex Instruction 

In Problem Set 1, we have asked you to implement two complex instructions (ADDm and STRLEN) 
in the microcoded processor. Imagine that you are adding a new instruction to the RISC-V ISA. 

Propose a new complex instruction (other than MOVN/MOVZ) that involves an EZ/NZ µBr and 
at least one memory operand. 

First devise an encoding for your new instruction. Consult the RISC-V unprivileged ISA 
specification to select an appropriate instruction format (see §2.2 “Base Instruction Formats”), 
and then find an unused opcode space (see the base opcode map in Table 24.1). Note that the 
custom-0/1/2/3 and reserved spaces are currently available. Define your instruction in 

${CHIPYARDROOT}/generators/riscv-sodor/src/main/scala/common/ instructions.scala (search 

for a TODO comment in the file). We refer to the definition for MOVN as an example: 
 

def  MOVN  =  BitPat(" b ?????????????????????????1110111 ") 

 
The bit pattern specifies which bits should match a fixed value for decoding (e.g. an opcode). 

Note that the ? character denotes a “don’t-care” bit location that may take any value (e.g., register 
specifiers). Underscore characters are ignored. The variable identifier is used as a label for the 
microcode dispatcher. 
 
Once you have assigned an instruction encoding, you will have to write an assembly test to test 

your instruction. As an example, an assembly test for the MOVN instruction is provided in 

${CHIPYARDROOT}/generators/riscv-sodor/test/custom-tests/movn.S. Since the assembler is 
not directly aware of our custom instructions, we must numerically encode the instruction with 
a .word directive.10 We also write some assembly code to load values into registers and memory. 
Finally, the code checks the correctness of the result. 

We have provided you with an empty assembly template to complete at 
${CHIPYARDROOT}/generators/riscv-sodor/test/custom-tests/yourinst.S (search for a TODO 
comment in the file). Compile your assembly test: 

 

eecs$  cd $CHIPYARDROOT 

eecs$  wget https://raw.githubusercontent.com/ucb-bar/chipyard-cs152-sp23/main/build-custom-test.sh 

eecs$  chmod +x build-custom-test.sh 

eecs$ sed -i 's/chipyard-cs152-sp23/chipyard/' build-custom-test.sh 

eecs$  ./build-custom-test.sh      # you can ignore the conda errors 
 

 

10 Recent versions of the GNU assembler support the more user-friendly .insn directive: https://sourceware. 
org/binutils/docs/as/RISC_002dV_002dFormats.html

https://raw.githubusercontent.com/ucb-bar/chipyard-cs152-sp23/main/build-custom-test.sh
https://sourceware.org/binutils/docs/as/RISC_002dV_002dFormats.html
https://sourceware.org/binutils/docs/as/RISC_002dV_002dFormats.html


 

Next, work out the microcode implementation on a worksheet that you have used in Problem Set 
1 (worksheet 2.A or 2.B). Once you have figured out all the states and control signals, add your 
microcode to ${CHIPYARDROOT}/generators/riscv-sodor/src/main/scala/rv32_ucode/microcode.scala 

 (search for a TODO comment in the file). Again, as an example, the MOVN instruction has 
already been implemented in microcode.scala. Once you are done, build the processor and run 
the assembly test. 

 

eecs$  cd ${CHIPYARDROOT}/sims/verilator 
eecs$  CUSTOM_TESTS=${CHIPYARDROOT}/generators/riscv-sodor/test/custom-tests 
eecs$  make CONFIG=SodorUCodeConfig run-binary BINARY=${CUSTOM_TESTS}/rv32ui-p-yourinst 

 

 

Look at the cycle-by-cycle trace written to 
${CHIPYARDROOT}/output/chipyard.harness.TestHarness.SodorUCodeConfig/rv32ui-p-yourinst.out to 
examine the microarchitectural state. Verify that the processor has 
executed your microcoded instruction correctly. Revise your implementation if necessary. 

Feel free to email your TA or attend office hours if you need help understanding Chisel, the 
processor, or anything else regarding this problem. 

 
4.4 Processor Design 

Propose a microarchitectural modification of your own to a 3-stage or 5-stage pipeline. Justify 
the motivation, cost, and overhead of your design modification by explaining which instructions 
are affected by the changes you propose and in what way. 

You may have to draw a block diagram to clarify your proposed changes, and you will very likely 

have to modify the tracer.py script to track specific types of instructions not previously traced. A 
further tactic might be to show that while some instructions are impacted negatively, these 
instructions are not a significant portion of certain benchmarks. Feel free to be creative. Try to 
quantitatively justify your case, but you do not need to implement your proposed processor 
design. 

 
4.5 Your Own Idea 

We are also open to your own ideas. Particularly enterprising individuals can even modify the 
provided Chisel processors as part of a study of one’s own design. However, you must first 
consult with the professor and/or TAs to ensure that your idea is of sufficient merit and of 
manageable complexity. 

 
5 Feedback Portion 

In order to improve the labs for the next offering of this course, we would like your feedback. 
Please append your feedback to your individual report for the directed portion. 

• How many hours did the directed portion take you? 
• How many hours did you spend on the open-ended portion? 
• Was this lab boring? 
• What did you learn? 
• Is there anything that you would change? 

Feel free to write as much or as little as you prefer (a point will be deducted only if left completely 
empty).



 

5.1 Team Feedback 

In addition to feedback on the lab itself, please answer a few questions about your team: 

• In one short paragraph, describe your contributions to the project. 
• Describe the contribution of each of your team members. 
• Do you think that every member of the team contributed fairly? If not, why? 
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