
CS 152 Laboratory Exercise 3

Professor: Christopher Fletcher
Department of Electrical Engineering & Computer Sciences

University of California, Berkeley

February 16, 2024

Revision History

Revision Date Author(s) Description

1.4 2024-02-16 Joshua You Chipyard bump
1.3 2023-02-25 Allison Husain Chipyard bump, light rephrasing
1.2 2022-03-17 hngenc Added workaround for "git://" being disabled
1.1 2022-03-10 hngenc Added full path to pk-spectre
1.0 2022-03-07 hngenc Initial release

1 Introduction and Goals

The goal of this laboratory assignment is to study out-of-order processor design in the
Chisel simulation environment. You will be provided a complete implementation of a
speculative out-of-order superscalar RISC-V core to experiment with and analyze. You
can also choose to improve the design as part of the open-ended portion.

While students are encouraged to discuss solutions to the lab assignments with each
other, you must complete the directed portion of the lab yourself and submit your own
lab report for these problems. For the open-ended portion of each lab, students can either
work individually or in groups of two or three. Each group will turn in a single report
for the open-ended portion of the lab. You are free to participate in different groups for
different lab assignments.

1.1 Graded Items

All reports are to be submitted through Gradescope. Please label each section of the
results clearly. All directed items need to be turned in for evaluation. Your group only
needs to submit one of the problems in the open-ended portion.

• (Directed) Problem 3.3: Performance Bottlenecks
• (Open-ended) Problem 4.1: Designing Your Own Branch Predictor



• (Open-ended) Problem 4.2: Recreating Spectre Attacks
• (Directed) Problem 5: Feedback

Lab reports must be written in readable English; avoid raw dumps of logfiles. Your lab! →
report must be typed, and the open-ended portion must not exceed six (6)
pages. Charts, tables, and figures – where appropriate – are excellent ways to succinctly
summarize your data.

2 Background

The infrastructure is similar to Lab 2, with the new addition of a new processor: BOOM.

2.1 BOOM: Berkeley Out-of-Order Machine

The Berkeley Out-of-Order Machine (BOOM) is a synthesizable, parameterized, out-of-
order superscalar RISC-V core. It is a unified physical register file design (also known as
explicit register renaming) with a split ROB and issue window. To build an SoC with a
BOOM core, BOOM utilizes the Rocket Chip SoC generator as a library to reuse different
microarchitectural components (TLBs, PTWs, etc).

BOOM documentation: https://docs.boom-core.org/en/latest/index.html! →

2.1.1 Pipeline

Conceptually, BOOM is divided into 10 stages: Fetch, Decode, Register Rename, Dispatch,
Issue, Register Read, Execute, Memory, Writeback and Commit. However, some of those
stages are combined in the current implementation. Additionally, some of these stages
are pipelined across multiple pipeline stages.

Fetch : Instructions are fetched from instruction memory and pushed into a FIFO queue,
known as the Fetch Buffer. Instruction pre-decode is performed, to find alignments
of 16-bit vs 32-bit instructions. Branch prediction also occurs in this stage, redi-
recting the fetched instructions as necessary.

Decode : Decode pulls instructions out of the Fetch Buffer and generates the appropriate
“micro-ops” (µops) to place into the pipeline.1

Rename : The ISA, or “logical”, register specifiers (e.g. x0-x31) are then renamed into
“physical” register specifiers.

Dispatch : The µop is then dispatched, or written, into a set of Issue Queues.

Issue : µops sitting in an Issue Queue wait until all of their operands are ready and are
then issued. This is the beginning of the out-of-order portion of the pipeline.2

Register Read : Issued µops first read their register operands from the unified Physical
Register File or from the Bypass Network.

1 Because RISC-V is a RISC ISA, currently all instructions generate only a single µop.
2 More precisely, µops that are ready assert their request, and the issue scheduler within the Issue Queue
chooses which µops to issue that cycle.

CS 152 Lab 3 2

https://docs.boom-core.org/en/latest/index.html


Figure 1: Evolution of the BOOM pipeline. You will be using the latest version, version
3.

Execute : µops then enter the Execute stage where the functional units reside. Issued
memory operations perform their address calculations in the Execute stage, and
then store the calculated addresses in the Load/Store Unit which resides in the
Memory stage.

Memory : The Load/Store Unit consists of two queues: a Load Address Queue (LDQ),
and a Store Queue (STQ). Loads are fired to memory when their address is present
in the LDQ. Stores are fired to memory at Commit time (and naturally, stores
cannot be committed until both their address and data have been placed in the
STQ).

Writeback : ALU and load results are written back to the Physical Register File.

Commit : The Reorder Buffer (ROB), tracks the status of each instruction in the pipeline.
When the head of the ROB is not-busy, the ROB commits the instruction. For
stores, the ROB signals to the store at the head of the Store Queue (STQ) that it
can now write its data to memory.

2.1.2 Branch Support

BOOM supports full branch speculation and branch prediction. Each instruction, no mat-
ter where it is in the pipeline, is accompanied by a Branch Tag that marks which branches
the instruction is speculated under. A mispredicted branch requires killing all instruc-
tions that depended on that branch. When a branch instructions passes through Rename,
copies of the Register Rename Table and the Free List are made. On a mispredict, the

CS 152 Lab 3 3



saved processor state is restored.

2.2 Chipyard

Chipyard is an integrated design, simulation, and implementation framework for agile
development of systems-on-chip (SoCs). It combines Chisel, the Rocket Chip generator,
and other Berkeley projects to produce a full-featured RISC-V SoC from a rich library of
processor cores, accelerators, memory system components, and I/O peripherals.

Chipyard documentation: https://chipyard.readthedocs.io/en/latest/! →

3 Directed Portion (20%)

3.1 Terminology and Conventions

Throughout this course, the term host refers to the machine on which the simulation runs,
while target refers to the machine being simulated. For this lab, an instructional server
will act as the host, and the RISC-V processors will be the target machines.

Unix shell commands to be run on the host are prefixed with the prompt “eecs$”.

3.2 Setup

To complete this lab, we recommend that you ssh into an instructional server with the
instructional computing account provided to you. The lab infrastructure has been set
up to run on the eda{1..16}.eecs.berkeley.edu machines (eda-1.eecs, eda-2.eecs,
etc.). If you’d like to use another setup (such as your personal machine, etc.) or did not
use the instructional servers for the previous lab, please refer to the Lab 2 instructions on
setting up your system.

Once logged in, clone the new lab materials into an appropriate workspace and initialize
the submodules.

eecs$ cd /home/tmp/${USER}
eecs$ rm -rf OLD_LAB2_MATERIALS # save tmp space (replace the name here with the lab2 directory)
eecs$ git clone https://github.com/ucb-bar/chipyard-cs152-sp24.git \

-b cs152-lab3-sp24 cs152-lab3-sp24
eecs$ cd cs152-lab3-sp24
eecs$ ./build-setup.sh riscv-tools --skip-toolchain --skip-firesim --skip-marshal --skip-circt

After setting up the repository, you must setup the Chipyard environment in every ter-
minal that is opened.

eecs$ cd cs152-lab3-sp23
eecs$ export LAB3ROOT=$(pwd)
eecs$ source env.sh

The source env.sh command should be run in every new terminal that is opened. If it! →
doesn’t exist, then you should verify that the setup instructions were successful.

CS 152 Lab 3 4

https://chipyard.readthedocs.io/en/latest/


Figure 2: Detailed BOOM pipeline; * denotes where the core is configurable

CS 152 Lab 3 5



The remainder of this lab will use ${LAB3ROOT} to denote the path of the lab3 working
tree. This should be set for you in the env.sh file that you source (in addition to the
SIMDIR env. variable used later). Its directory structure is outlined below:

${LAB3ROOT}

lab/

open2/ Source code for Problem 4.2

generators/ Library of RTL generators

chipyard/ SoC configurations

rocket-chip/ Rocket Chip generator

boom/ BOOM core

rocket-chip-inclusive-cache/ SiFive’s inclusive L2 cache

testchipip/ RTL blocks for interfacing with test chips

...

sims/

verilator/ Verilator simulation flow

vcs/ Synopsys VCS simulation flow

...

tools/

barstools/ Collection of common FIRRTL transformations

...

3.3 Performance Bottlenecks

Building an out-of-order processor is hard. Building an out-of-order processor that is well
balanced and high performance is really hard. Any one component of the processor can
bottleneck the machine and lead to poor performance.

For this problem, you will set the parameters of the processor to a low-end “worst-case”
baseline (Table 2) and incrementally introduce features. While some of these structures
are on the small side, the machine should generally remain well-fed since only one instruc-
tion is dispatched and issued at a time, and the pipeline is not exceptionally deep.

Table 2: BOOM worst-case versus improved configurations
Worst-Case Improved

Physical Register File 33 64
Reorder Buffer 4 16

Branch Prediction disabled BTB, BHT, 8-entry RAS

CS 152 Lab 3 6



Collect and report the CPI numbers for the following benchmarks. Results for the in-order
Rocket core has been provided for you. Note: Since the compile and simulation times
can be fairly significant, you may gather the data in collaboration with other students
and share them, but the questions must be answered independently.

dhrystone median multiply qsort spmv towers vvadd

Rocket 1.200 1.379 1.136 1.427 1.690 1.029 1.024

BOOM (worst-case)
BOOM (64 PRF)
BOOM (16 ROB)
BOOM (br. pred.)

Navigate to ${LAB3ROOT}/generators/boom/src/main/scala/common/config-mixins.
scala and search for the definition of the WithNCS152BaselineBooms config. First sim-
ulate with the default parameters, which should correspond to the “worst-case” settings.
As you move down the rows of the table, change the parameters to match while retaining
the features from the previous rows.

For each design point, build the simulator and run the benchmarks in a batch.3

eecs$ cd ${LAB3ROOT}/sims/verilator
eecs$ make CONFIG=CS152BaselineBoomConfig
eecs$ make CONFIG=CS152BaselineBoomConfig run-bmark-tests
eecs$ cd output/chipyard.harness.TestHarness.CS152BaselineBoomConfig

In the output directory, review the *.log files (one per benchmark) for the cycle and
retired instruction counts. Also record the branch prediction accuracies summarized at
the end of the *.out files.

Format the data in a chart or table, and answer the following questions in your report:

(3.3.a) Compare the results for 1-wide BOOM with the in-order, 5-stage Rocket core. Was
out-of-order issue an improvement on the CPI for these benchmarks? Explain the
impact of each microarchitectural change.

(3.3.b) Is branch prediction with a BTB, BHT, and RAS always a benefit?

3 You can build and run the simulator in parallel by adding the -j N flag to the make command, but
refrain from spawning an excessive number of jobs so as to be fair to other users. N = 4 is probably
acceptable.

CS 152 Lab 3 7



4 Open-ended Portion (80%)

Select one of the following questions per team.

All open-ended questions should use the parameters for BOOM as shown in Table 3,
unless otherwise specified. These should already match the CS152SWPredBoomConfig,
and CS152SmallBoomConfig configurations provided with the lab.

Table 3: BOOM open-ended configurations
Problem 4.1 Problem 4.2

Configuration CS152SWPredBoomConfig CS152SmallBoomConfig

Issue width 3 1
Fetch width 4 4
ROB 96 entries 32 entries
Issue slots 32 entries 8 entries
Integer register file 96 physical registers 52 physical registers
FP register file 64 physical registers 48 physical registers
LDQ/STQ 16 entries 8 entries
Max branches 12 branches 8 branches
L1D capacity 16 KiB
L1D associativity 4 ways
MSHRs 2 MSHRs

4.1 Designing Your Own Branch Predictor

The version of BOOM provided in the CS152SWPredBoomConfig uses a simple bimodal
predictor consisting of a Branch History Table (BHT) of 256 2-bit saturating counters.
This was the same scheme implemented by the MIPS R10000 [1], although with 512
entries instead. For this problem, your goal is to build an improved branch predictor for
BOOM that performs better than this baseline.

Feel free to scour the abundance of literature and historical examples for ideas. This
technical report [2] provides a useful survey of common branch prediction techniques. A
good design to look into is the two-level tournament branch predictor from the Alpha
21264 [3], which combines three predictors:

• A global predictor with a 4096-entry table of 2-bit saturating counters indexed by
the global history of the last 12 branches

• A local predictor with a 1024-entry table of 10-bit branch patterns indexed by PC,
which is then used to index a set of 3-bit counters

• An arbiter (or “choice”) predictor with a 4096-entry table of 2-bit counters indexed
by global history, used to select either the global or local prediction as the final one

Especially impressive designs could attempt to beat the hardware implementation of the
TAGE predictor algorithm provided in the lab. You may replace the WithSWBPD config
option with WithTAGELBPD in BoomConfigs.scala to compare a hardware implementation

CS 152 Lab 3 8



of the TAGE predictor algorithm, with a 2 KB fast PC-indexed BHT, and 8KB of TAGE
tables.

The Chisel implementations of various predictor components, including TAGE, BTBs,
BHTs, and the RAS are available in ${LAB3ROOT}/generators/boom/src/main/scala/
ifu/bpd.

4.1.1 C++ Framework

For the implementation, we will leverage the C++ branch predictor framework that exists
in BOOM, which lets one more easily construct software models of a branch predictor’s
intended functional behavior for rapid prototyping and verification.

Although it presents a relatively simplified interface compared to a real hardware predictor
module, it is flexible enough to admit a wide space of potential designs while abstracting
away much of the complexity of the surrounding logic in the core.

Implement your branch predictor design in ${LAB3ROOT}/generators/boom/src/main/
resources/csrc/predictor_sw.cc. This file contains three functions to modify:

Function Description

initialize_branch
↪→ _predictor()

This is called at the beginning of simulation and can be
used to initialize global state.

predict_branch() This is called to provide a prediction for a branch or jump
instruction with the given PC (ip). The global history of
the most recent branches is passed as a bit vector in hist.
The globalHistoryLength config parameter defaults to
32 for the C++ predictor. The prediction is returned by
assigning 1 for taken and 0 for not taken to the variable
pointed to by pred.

update_branch() This is called to update the predictor state with branch
resolution information. Updates occur non-speculatively
in program order. ip provides the PC of the branch or
jump instruction, hist provides the global history, and
taken provides the outcome of the branch or jump.

Both predict_branch() and update_branch() may be called multiple times per cycle.
Remember that the branch predictor is inherently accessed speculatively, so you may see
requests for branches that are later squashed by the pipeline.

4.1.2 Simulating

Build the simulator4 and run the benchmark suite using the same flow as the directed
portion (note the different top-level configuration):
4 The build system has been slightly modified for this lab to avoid re-elaborating Chisel if only C++
resource files have been changed.

CS 152 Lab 3 9



eecs$ cd ${LAB3ROOT}/sims/verilator
eecs$ make CONFIG=CS152SWPredBoomConfig
eecs$ make CONFIG=CS152SWPredBoomConfig run-bmark-tests

To run an individual benchmark only (e.g., dhrystone, you may need to run-bmark-tests
first to set up symlinks):

eecs$ make CONFIG=CS152SWPredBoomConfig run-binary LOADMEM=1 \
BINARY=output/chipyard.harness.TestHarness.CS152SWPredBoomConfig/dhrystone.riscv

Chipyard also supports a VCS simulation flow. Simply navigate to ${LAB3ROOT}/sims/! →
vcs, and the same make commands should work. VCS has the advantage of shorter compile
times compared to Verilator at the cost of somewhat lower simulation performance.

4.1.3 Debugging

To dump waveforms from simulation, run the debug versions of the make targets:

eecs$ cd ${LAB3ROOT}/sims/verilator
eecs$ make CONFIG=CS152SWPredBoomConfig debug
eecs$ make CONFIG=CS152SWPredBoomConfig run-binary-debug LOADMEM=1 \

BINARY=output/chipyard.harness.TestHarness.CS152SWPredBoomConfig/dhrystone.riscv

Waveform dumps (which can become quite sizeable) are written to ${LAB3ROOT}/sims/
verilator/output/chipyard.harness.TestHarness.CS152SWPredBoomConfig/*.vcd. The
branch predictor is located at TestDriver.testHarness.chiptop0.system.tile_prci_
domain.element_reset_domain_boom_tile.frontend.bpd.banked_predictors.
pred_harness in the module hierarchy.

Waveforms can be viewed on the instructional servers with the DVE application or GTK-
Wave, which requires X11 forwarding over ssh or X2Go:

eecs$ dve & # ‘&’ backgrounds the process

4.1.4 Benchmarks

The source code for all benchmarks can be found in ${LAB3ROOT}/toolchains/riscv-tools/
riscv-tests/benchmarks/. First initialize the riscv-tests submodule:

eecs$ git submodule update --init ${LAB3ROOT}/toolchains/riscv-tools/riscv-tests

The disassemblies that correspond to the pre-installed binaries are available at ${RISCV}/
riscv64-unknown-elf/share/riscv-tests/benchmarks/*.riscv.dump.

4.1.5 Submission

In your report, present the IPC and branch prediction accuracy results of your custom
predictor on all benchmarks. Describe your design approach and any implementation

CS 152 Lab 3 10



challenges in detail, and explain its performance characteristics. Be sure to cite the
appropriate sources if you borrowed from existing concepts.

• How did you calculate the amount of state your branch predictor has?

• How do certain parameters (e.g., number of entries) impact accuracy?

• Which branches or patterns were easier or harder to predict?

• What kind of application code do you expect your predictor to perform better or
worse on?

• Do you foresee any challenges with the implementation of your predictor algorithm
as a hardware block within a superscalar, out-of-order core?

• What changes or alternative approaches would you pursue as future work if more
time were available?

Feel free to reach out to your GSI if you need help understanding BOOM, branch predic-
tion schemes, or anything else regarding this problem.

4.2 Recreating Spectre Attacks

It turns out that BOOM, like many out-of-order processors, is susceptible to a class of
microarchitectural side-channel attacks that exploit branch prediction, speculative execu-
tion, and cache timing to leak information from memory, bypassing security mechanisms
such as virtual memory and bounds checks. These first came to prominance with the
Spectre and Meltdown vulnerabilities disclosed in 2018. For this problem, your goal is to
mount a Spectre attack on BOOM to extract secret data from protected kernel memory.

4.2.1 Background

First read the Spectre paper [4] and the Google Project Zero post [5] to understand
the basic principles and techniques behind the Spectre exploit. The proof-of-concept in
Appendix C of the paper may be a useful reference as you write your code.

Although not the focus of this problem, it is also worth reading a little about Meltdown
[6], a closely related variant that arises from deferred TLB permissions checks.

4.2.2 Attack Scenario

In this scenario, you control a malicious adversary that runs as an unprivileged program
in user mode (U-mode) on top of the RISC-V proxy kernel (pk), a lightweight execution
environment that assumes the role of a minimalistic operating system. pk is designed to
support tethered RISC-V implementations with limited I/O capability and thus handles
I/O-related system calls by proxying (forwarding) them to a host – in this case, the
machine running the simulation.

pk itself runs in the higher-privilege supervisor mode (S-mode) but shares the same virtual
address space as the user program. The lower 2 GiB of the virtual address space is reserved

CS 152 Lab 3 11



for the user program, while pk is mapped into the upper portion after 0x80000000.5 This
is a common technique in operation systems to facilitate more efficient communication
between kernel and user space. For our purposes, this fact merely makes it slightly easier
to reason about the addresses of the secret data and the privileged code being targeted.6

The objective of the adversary is to learn the values of a contiguous 128-byte array in
the static .data.secret section in pk, representing a secret key. This data is ordinarily
inaccessible to user programs, as it resides in a page with supervisor-only read permissions.

We deliberately introduce a few artificial conditions to simplify the task without compro-
mising the fundamental methodology:

• The secret data is placed at a fixed virtual address that is already known.

• The attack vector is a custom syscall handler in pk that contains a vulnerable Spectre
gadget by design.

• The Spectre gadget leaks only one bit at a time to minimize noise from cache
thrashing.

The Spectre gadget, shown here lightly edited, is very similar to the canonical example
for Spectre Variant 1 (bounds check bypass):

uint8_t leak_array[128]; // Two 64-byte cache lines

int sys_leak(size_t index, int shift)
{

if (index < sizeof(leak_array)) {
uint8_t data = leak_array[index];
index = (data >> shift) & 0x1;
return leak_array[index * 64];

}
return -1;

}

The first array access, which involves an index controlled by the adversary through a
syscall argument, can be used to speculatively read an arbitrary byte in memory. The
second array access then reads from different cache lines depending on the data value and
the shift argument.

Note that the bounds check in the if statement prevents the results of invalid accesses
from becoming architecturally visible. However, side effects in the cache induced by the
data-dependent load persist after speculative execution, and these side effects can be
measured to infer data values. While several approaches to cache-based covert channels
exist, a Prime+Probe attack [7] is likely the most practical option given that BOOM does
not presently implement an unprivileged cache flush instruction.7

5 This offset is specifically chosen such that this virtual address range is identical to the physical address
range where pk resides, i.e., VA = PA.

6 Meltdown can be mitigated in hardware by not forwarding faulting loads or in software by separating
the user and kernel address spaces, accomplished through kernel page-table isolation (KPTI) in Linux.
Neither of these, however, defend against Spectre.

7 Flush+Reload is theoretically possible since the L2 cache controller provides a mechanism to flush

CS 152 Lab 3 12



The overall flow of the attack would proceed as follows:

1. Training step: Mistrain the branch predictor to strongly predict that the if con-
dition for the bounds check will be true, generally by repeatedly invoking the syscall
with valid inputs.

2. Prime step: Fill the cache sets that leak_array would map to with known lines.

3. Exploit step: Invoke the syscall with malicious arguments. After the if condition
is predicted false, the if body is speculatively executed. The inputs are specially
crafted so that the out-of-bounds load points to a secret byte, of which one bit is used
to construct the pointer for another load that evicts one of the primed lines. The
misspeculated execution path is eventually reverted when the branch is resolved,
but the cache state remains perturbed.

4. Probe step: Determine which line was evicted by measuring the access time to
each line. The cache set that previously held the evicted line corresponds to the
value of the leaked bit.

5. Repeat for enough samples to gain sufficiently high confidence.

It is not necessary to follow this procedure exactly. You may want to experiment with
variations to improve accuracy and/or throughput.

4.2.3 Reverse Engineering

The source code for the sys_leak handler can be found in ${LAB3ROOT}/toolchains/
riscv-tools/riscv-pk/pk/syscall.c. First initialize the riscv-pk submodule:

eecs$ git submodule update --init ${LAB3ROOT}/toolchains/riscv-tools/riscv-pk

A pre-built pk-spectre executable is already provided along with the Lab 3 infrastructure.
To figure out the virtual addresses of various symbols in pk (e.g., leak_array), refer to
the symbol table in the fully linked binary:

eecs$ riscv64-unknown-elf-readelf -s ${LAB3ROOT}/lab/open2/pk-spectre > pk.sym

To figure out the instruction PCs to compare to the BOOM traces, look at the disassembly:

eecs$ riscv64-unknown-elf-objdump -d ${LAB3ROOT}/lab/open2/pk-spectre > pk.dump

To figure out the addresses of the secret data and to verify your results, dump the
.data.secret section contents:

eecs$ riscv64-unknown-elf-objdump -s -j .data.secret \
${LAB3ROOT}/lab/open2/pk-spectre

specific lines, which also evicts from the L1 due to the inclusive property, but the requisite MMIO
control registers are not exposed to U-mode by default.

CS 152 Lab 3 13



Data words are displayed in big-endian byte order, i.e., the most significant (leftmost)
byte in a word is stored at the lowest address. (The test data comes from the digits of π.)

4.2.4 Development and Testing

To help you start writing your code, ${LAB3ROOT}/lab/open2/spectre.c contains an
example skeleton with helper functions to invoke the syscall and read the cycle counter.
To compile:

eecs$ cd ${LAB3ROOT}/lab/open2
eecs$ make

Feel free to modify the user program however you wish: add a custom linker script, mix
in assembly files, etc.

To run the simulation:8

eecs$ cd ${LAB3ROOT}/sims/verilator
eecs$ make CONFIG=CS152SmallBoomConfig run-spectre

Traces/logs go to chipyard.harness.TestHarness.CS152SmallBoomConfig/pk-spectre.
out and chipyard.harness.TestHarness.CS152SmallBoomConfig/pk-spectre.log, re-
spectively.

To enable logging of dispatched instructions in BOOM, open ${LAB3ROOT}/generators/
boom/src/main/scala/common/config-mixins.scala and set enableDispatchPrintf
to true under the WithNCS152SmallBooms config. 9 This should help give you sense
of the size of the speculative execution window prior to the branch mispredict recovery.

To quickly test cache eviction/measurement code and other utility functions, you can
write a bare-metal program in ${LAB3ROOT}/lab/open2/baremetal.c. Simulations are
much shorter as it avoids waiting for pk to initialize and load the user program. This code
executes in machine mode (M-mode) with physical addressing, and only a limited subset
of libc is supported. Note: It is not possible to perform the entire attack in a bare-metal
environment, as the victim syscall and secret data are not available without pk.

eecs$ make CONFIG=CS152SmallBoomConfig run-binary-hex \
BINARY="${LAB3ROOT}/lab/open2/baremetal.riscv"

4.2.5 Submission

Your Spectre attack code should be submitted through Gradescope. In your report,
explain how your code works, and describe any challenges encountered and solutions that
you used.

• What is the accuracy and performance (cycles per secret byte) of your attack?
8 The 1-wide BOOM configuration is preferred as it simulates much more quickly.
9 You may also want to disable enableBranchPrintf to make the log more readable

CS 152 Lab 3 14



• What changes could you adopt to increase the speed (in cycles per secret byte) of
your attack? What are the tradeoffs or disadvantages of such techniques?

• What are some hardware and/or software countermeasures against Spectre that you
can think of? Discuss the advantages and disadvantages of each.

Feel free to reach out to your GSI if you need help understanding Meltdown/Spectre,
BOOM, riscv-pk, or anything else regarding this problem.

5 Feedback Portion

In order to improve the labs for the next offering of this course, we would like your
feedback. Please append your feedback to your individual report for the directed portion.

• How many hours did you spend on the directed and open-ended portions?
• What did you dislike most about the lab?
• What did you like most about the lab?
• Is there anything that you would change?
• Is there something else you would like to explore in the open-ended portion?
• Are you interested in modifying hardware designs as part of the lab?

Feel free to write as much or as little as you prefer (a point will be deducted only if left
completely empty).

5.1 Team Feedback

In addition to feedback on the lab itself, please answer a few questions about your team:

• In a few sentences, describe your contributions to the project.
• Describe the contribution of each of your team members.
• Do you think that every member of the team contributed fairly? If not, why?

6 Acknowledgments

This lab is heavily based on the original CS 152 lab that used BOOM, developed by
Christopher Celio, which was itself partially inspired by the preceding lab developed by
Henry Cook. Special thanks goes to Jerry Zhao and other members of the Berkeley
Architecture Research group who continue to develop BOOM.

References

[1] K. C. Yeager, “The MIPS R10000 superscalar microprocessor,” IEEE Micro, vol. 16,
no. 2, pp. 28–41, Apr. 1996. doi: 10.1109/40.491460.

[2] S. McFarling, “Combining branch predictors,” Western Research Laboratory, Tech.
Rep. WRL-TN-36, Jun. 1993. [Online]. Available: https : / / www . hpl . hp . com /
techreports/Compaq-DEC/WRL-TN-36.pdf.

[3] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE Micro, vol. 19, no. 2, pp. 24–
36, Mar. 1999. doi: 10.1109/40.755465.

CS 152 Lab 3 15

https://doi.org/10.1109/40.491460
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://doi.org/10.1109/40.755465


[4] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting speculative execu-
tion,” in 2019 IEEE Symposium on Security and Privacy (SP), May 2019, pp. 1–19.
doi: 10.1109/SP.2019.00002. [Online]. Available: https://spectreattack.com/
spectre.pdf.

[5] J. Horn, Reading privileged memory with a side-channel, Jan. 2018. [Online]. Avail-
able: https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html.

[6] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: Reading kernel memory from user
space,” in 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD:
USENIX Association, Aug. 2018, pp. 973–990. [Online]. Available: https://www.
usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf.

[7] D. A. Osvik, A. Shamir, and E. Tromer, Cache attacks and countermeasures: The
case of AES, Cryptology ePrint Archive, Report 2005/271, 2005. [Online]. Available:
https://eprint.iacr.org/2005/271.

CS 152 Lab 3 16

https://doi.org/10.1109/SP.2019.00002
https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://eprint.iacr.org/2005/271

	Introduction and Goals
	Graded Items

	Background
	BOOM: Berkeley Out-of-Order Machine
	Pipeline
	Branch Support

	Chipyard

	Directed Portion (20%)
	Terminology and Conventions
	Setup
	Performance Bottlenecks

	Open-ended Portion (80%)
	Designing Your Own Branch Predictor
	C++ Framework
	Simulating
	Debugging
	Benchmarks
	Submission

	Recreating Spectre Attacks
	Background
	Attack Scenario
	Reverse Engineering
	Development and Testing
	Submission


	Feedback Portion
	Team Feedback

	Acknowledgments

