CS 160: UI Implementation

Professor John Canny

3/6/2006

Outline

- Output
 - * Basic 2-D computer graphics
 - * Color models
- Input
 - * Event overview
 - * Windowing systems
 - * Window events
 - * Event dispatching
- Development platforms

3/6/2006

2

2-D Computer Graphics

- Models for images
 - * Strokes, pixels, regions
- Coordinate systems
 - * Device, physical
- Drawing
 - * Paths, shapes, text

3/6/2006

Stroke Model

- Describe image as strokes (w/ color/thickness)
 - + Line ((10, 4), (17,4), thick 2, red)
 - + Circle ((19, 13), radius 3, thick 3, white)
- Maps to early vector displays & plotters
- Most UI toolkits have stroked objects

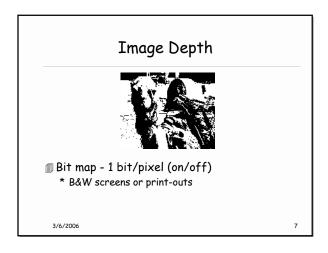
 * arcs, ellipses, rounded rectangles, etc.

3/6/2006

4

Problems with Stroke Model?

- How would you represent with strokes?
- Solution?


3/6/2006

Pixel Model

- Break-up complex images into discrete "pixels" & store color for each
- Resolution
 - * Spatial: number of rows by columns
 - * e.g., 1280 x 1024 is a good monitor display
 - * Quality laser printer: 10200 x 13200 (1200 dpi)
 - * Image depth (i.e., number of bits per pixel)
 - * Several styles... 8-bit, 24-bit, 32-bit

3/6/2006

6

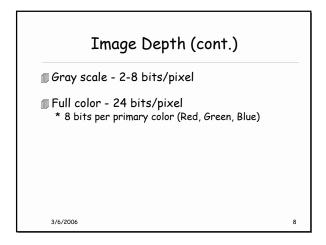
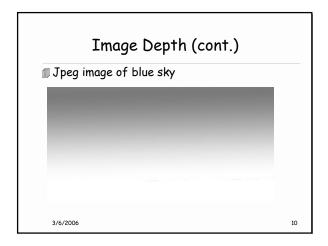
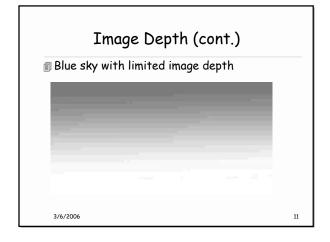


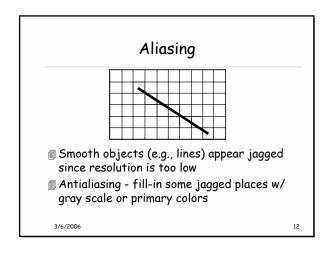
Image Depth (cont.)

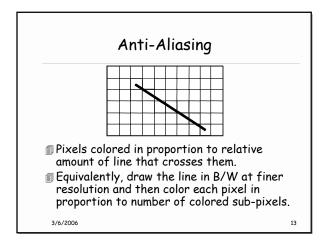
Full color - 32 bits/pixel

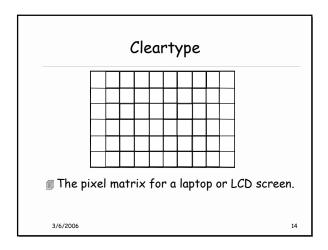
* Usually just 24-bit color (used for efficiency)

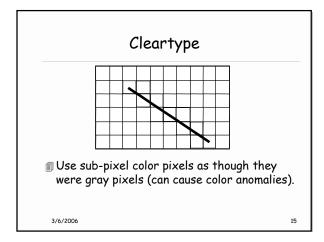

* Extra 8-bits are optional - can be used for "alpha" (transparency)

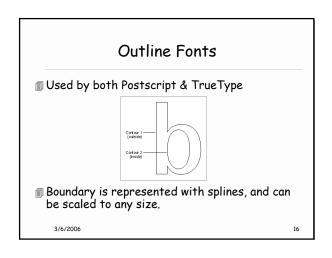

Color mapped - 8 bits/pixel

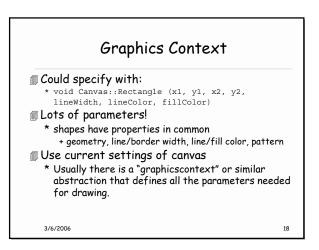

* Store index @ pixel - map into table w/ 24 bits


* Cuts space & computation


* Problem?????







Canvas Abstraction for the drawing surface * Most toolkits support one Defines methods used for drawing Each instance has a height, width, & defines its physical units Use the same method interface for * Windows * Image in memory * Printed output Called Graphical Device Interface (GDI) by MS

Text Font Selection

■ Font family

- * .Garamond, Arial, Modern, Times Roman, Courier
- $^{\star}\,$ defines the general shape of the characters
 - + Some are mono-spaced ("i" gets same space as "G")
 - + Serif (e.g., Times) vs. sans serif (e.g., Arial)
 - + Serifs have "feet" at baseline -> easier to track eye but look bad on low-resolution displays.

- * normal, bold, italic, bold italic
- \blacksquare size in points (1 point = 1/72 inch)

3/6/2006

Text (cont.)

Usually simple to draw

- + Canvas Cnv;
- +Cnv.SetFont ("Times", Bold, 10);
- +Cnv.Text (10, 20, "This is the text");

Outline vs. Bitmapped fonts

- * Precomputed bitmap fonts faster to draw
- * But separate maps needed for each font size
- * Outlines are fixed size, and can be scaled

3/6/2006

Vector vs. Raster Image Formats

■ Vector:

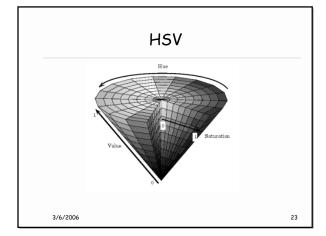
- * Macromedia/Adobe Flash.
- * SVG (Scalable Vector Graphics), a W3C standard.
- * VML (Microsoft), Powerpoint animation.
- * XAML the basis for Windows Vista

■ Raster/Bitmap:

- * Jpeg: Better for smooth images
- * Gif, PNG: Better for line art or "South Park" characters

3/6/2006 21

Color Models

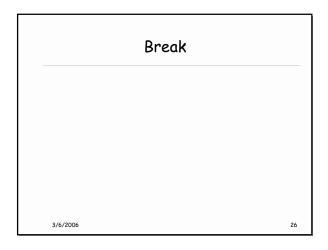

1 256 levels for each primary color

- * -> 24 bits / pixel
- RGB model

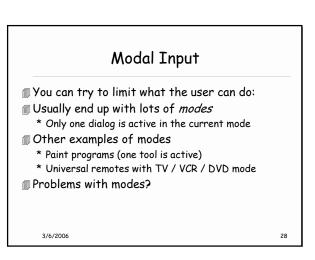
3/6/2006

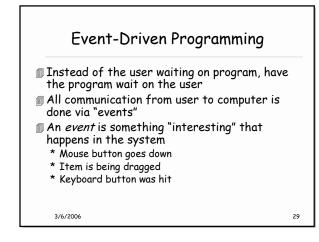
- * Specify color by red, green, & blue components
- # HSV model hue, saturation, & value
 - * Hue is primary wavelength (i.e., basic color)
 - * Saturation is a measure of how pure color is
 - * Value is intensity (dark vs. light)

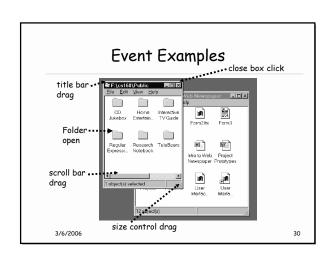
22


Color Models (cont.)

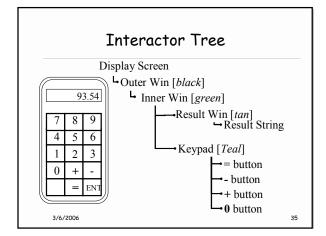
HSV is easier for people to use

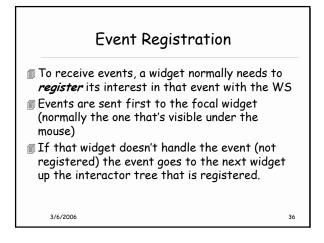

- * There is a direct conversion to RGB
- CMY model
 - * In terms of mixtures of pigments
 - * Pigment gets color from light it absorbs and does not reflect
 - * Mix Cyan, Magenta, Yellow
 - + subtractive primaries
 - * Used by printers and artists

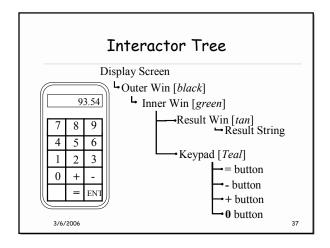

3/6/2006 24

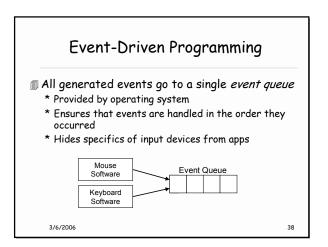

Alpha Channel Images sometimes have a 4th channel called "alpha"(α) to encode transparency (e.g. png) $C = \alpha \times C_f + (1-\alpha) \times C_r$ - each color channel

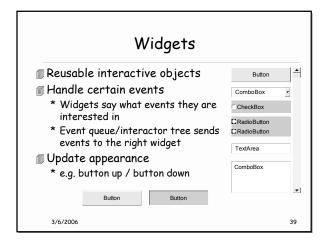
Command-line Interaction Program takes control, prompts for input Examples include * Command-line prompts (DOS, UNIX) * SCHEME interpreter The user waits on the program * Program tells user it's ready for more input * User enters more input But what do you do for a graphical interface with many widgets? 3/6/2006

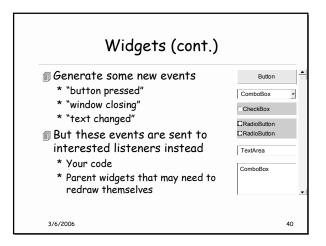


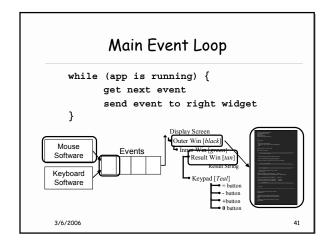


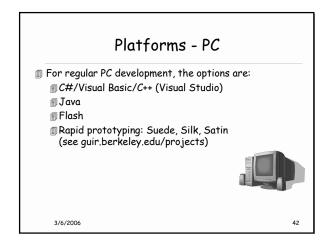


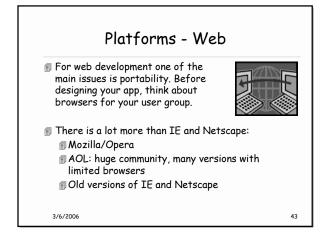

Major Issues How to decompose the UI into interactive objects? How to distribute input to the interactive objects How to partition between application & system software? Models for programming interactive objects Models for communications between objects

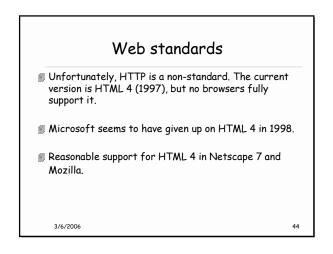

Interactor Tree Decompose interactive objects into a tree * Interactive objects also known as "widgets" * Based on screen geometry of objects * Nested rectangles (except in SVG and some other vector languages which can handle polygons) Used for dispatching events * Events are dispatched (sent) to code in widget * The code then handles the event











Web standards

- For portability, its best to stay with HTML 3.2
- Javascript is the most portable script. But you'll probably still need browser-specific code.

3/6/2006

Web standards - XML

- Fortunately, the situation looks better in future. XML should become the standard for web info exchange.
- XML provides data exchange, and complementary standards control formatting - XSL and XHTML.
- Good support in Mozilla, also IE and Netscape.

3/6/2006

XML Graphics standards

45

- There are several standards for 2D graphics:
- Flash is widely used, but a closed proprietary standard and not based on XML
- VML (old) promoted by Microsoft static 2D graphics, available in MS IE and PowerPoint
- J SVG: dynamic 2D graphics, W3C and Mobile phone standard. Hardware support in the newest phones now shipping
- XAML The foundation of Windows Vista

3/6/2006 47

The Cell Phone Industry

- There are 6.5 billion people on earth
- only about 1.2 billion in "developed" countries
- They will buy 800 million mobile phones this year
- one person in eight on the planet
- That's 4x PC or TV unit sales
- Fraction of smartphones should reach 40% by 2009
- most common "computer"

3/6/2006

46

A Typical phone

- e.g. LG VX8100 (free with service contract)
- 150-200 MHz ARM processor
- **32 MB ram**
- 2 GB flash (not included)

Roughly a Windows-98 PC, plus:

- # AGPS (Qualcomm/Snaptrack)
- More DSPs, OpenGL GPU
- @ EV-DO (300 kb/s), Bluetooth

With improvements in other phones, Windows Smart phones have moved from "PDA" to "phone" category 3/6/2006

The Inevitable In response to MIT's \$100 laptop, Microsoft last

month proposed the cell phone computer for developing countries:

3/6/2006

51

Microsoft Smart phones

- Visual Studio 2005

 - @ C++/Native (binary) code for ARM processors
 @Best for compute-intensive apps (speech/vision)
- C# and Visual Basic support WSIWYG editing of the User Interface via Windows forms.
- Visual Studio supports "Managed C++" development for Windows but not for the Mobile Platform right now.
- Note: the SP5 phones contain the .NET Framework v1.0 best to use those widgets.

3/6/2006

Java

- The i-mate SP5 phones also support Java runtime CLDC 1.1 and MIDP 1 and 2.
- You should be able to develop J2ME apps for this configuration, but we haven't tested it.

3/6/2006

53

Flash

- Flash: Supported already on some devices. See http://www.macromedia.com/mobile/supported devices/handsets.html
- There is a free player available for experimentation called "Flashhack" or "Menuhack" - use at your own nick
- Hardware support for Flash coming in phones soon, maybe this year.

3/6/2006

Other cell phone systems - BREW

- BREW is Qualcomm's "Binary Runtime Environment for Wireless" aka Verizon's "Get It Now" service.
- Something like the WIN32 API, but smaller. BREW includes support for
 - $\ensuremath{\text{\fontfamily{180}}}\xspace \ensuremath{\text{GPS-ONE}}\xspace$ much better than normal GPS
 - Streaming media and 3D graphics (OpenGL)
 - @ Camera, Audio, Bluetooth, Serial etc.
 - BT/serial support limited on actual phones
- Large distribution channel for apps built with BREW through over-the-air download.

3/6/2006 55

Summary

- Concepts:
- 2D vector graphics
- Raster graphics color, anti-aliasing
- Interactors
- Event-driven programming
- Development platforms

3/6/2006

56

54