
3/8/2006 1

CS 160: Interactive Programming

Professor John Canny

3/8/2006 2

Outline

Callbacks and Delegates
Multi-threaded programming
Model-view controller

3/8/2006 3

Callbacks

Window System
Event Queue

Widget1

Widget2

Widget3

Mouse &
Keyboard

Your code

Myclass
…data
…method1
…method2

Myclass2
…

3/8/2006 4

Callback Registration

Window System
Event Queue

Widget1

Widget2

Widget3

Mouse &
Keyboard

Your code

Myclass
…data
…method1

Myclass2
…

…method2

3/8/2006 5

Callback Registration

Callback: You register a method or function for the
WS to call when a specified event happens on a
specified widget.
In C# we say that you subscribe to this event.

Variation: There may just be one callback that handles
all events for that widget. The callback then must
dispatch on the event type.

3/8/2006 6

Callbacks: Typical uses

C++: One of the options to a Windows Form
Constructor is usually a callback function.

C#: Within the main form class:
private System.Windows.Forms.MenuItem GameExit;

…during form initialization…
this.GameExit.Click += new

System.EventHandler(myclass.GameExit_Click);

…defined among the myclass methods…
public void GameExit_Click(object sender,

System.EventArgs e)

3/8/2006 7

Callback Execution

Window System
Event Queue

Widget1

Widget2

Widget3

Mouse &
Keyboard

Your code

Myclass
…data
…method1

Myclass2
…

…method2

3/8/2006 8

Callbacks and Delegates
In C#, method pointers are discouraged. Instead, a class

instance representing the method is used. This class
instance is called a delegate.

Method registration from the example looked like this:
this.GameExit.Click += new

System.EventHandler(myclass.GameExit_Click);

Here myclass.GameExit_Click() is the method, and
new System.EventHandler(…)

creates a delegate for it.
C#’s event model only permits registration of delegates.

3/8/2006 9

Delegates
The delegate class normally overloads operator() with

the same arguments as the method its based on.
So

delegate(a,b,c)

Has the same effect as
method(a,b,c)

But this means the delegate class must be redefined if
the argument types to the method change.

This is a type-safe way to refer to methods.
The (minor) disadvantage is that we are using heap

storage for each method reference.

3/8/2006 10

To Thread, or not to Thread?

That is the question…

3/8/2006 11

When thou must thread

Use separate threads for any operations that
can occur asynchronously:
* Large file operations – use separate threads if you

need to be updating and large files.
* Network communication (sockets): use one thread

for each connection.
* Use a thread for each other I/O device, e.g. one

each for reading from or writing to the sound card
* Timers: if you schedule events to happen later, you

need a thread to trigger that action

3/8/2006 12

When thou shoulds’t thread

There are few more reasons:
* Your computer has many cores (CPUs), and threads

are the easiest way for the OS to keep them busy
* Providing progress indicators for long operations
* Keeping an interactive help system alive while your

app is running

3/8/2006 13

When thou has’t not a choice

In C#, there is always a garbage collection thread
running, or trying to.

Normally you don’t “see” this thread (it waits until all
other threads suspend), but you should know that its
there, and what it does (moving objects).

Code you put in “finalizers” (which do clean up before
an object is garbage collected) runs in its own thread.

3/8/2006 14

How many Multithreaded Apps?

Multithreading is the norm for interactive,
networked apps, may 95% of all applications.

Just about all the 160 projects should be
multi-threaded, at least in production versions.

3/8/2006 15

What’s in a thread?

A thread is a partial virtual machine (with its own stack)
that runs your program. Threads share heap storage
and static variables. (processes don’t share memory)
…
for (i=0; i<n; i++) {

tmp = A[i];
A[i] = B[i];
B[i] = tmp;

}

VM 1 VM 2

3/8/2006 16

Thread Safety

Code is thread safe if it can be called from multiple
threads without interaction between them.
A simple C++ function or method works just fine:

int fact(int n) {
int i, p;
for (i=1,p=1; i<=n; i++) p*=i;
return p;

}

Separate ints i,p are created on the stack each time
the function is called. Each thread has its own copy.

3/8/2006 17

Thread Unsafe-ty

What would happen if two threads tried to execute?:

int fact(int n) {
static int i, p;
for (i=1,p=1; i<=n; i++) p*=i;
return p;

}

Or here

3/8/2006 18

Thread Local Storage

As a general rule, you should try to use different class
instances in each thread to minimize conflicts.
C# and Java have some support for this, and allow the
same name to refer to different storage in each
thread.

Using thread local storage is a fast track to thread
safety, and can greatly simplify multithreaded
programming, e.g. separate thread local state for each
remote network connection or file operation…

3/8/2006 19

Thread Communication

Of course, the whole point of threads is to allow fast
communication through shared memory. Everything
can’t be thread local, or the threads could never
communicate.

Threads communicate through various shared objects.
But whenever they share an object, we must be careful
about how they do it to avoid problems.

Let’s start with a method we have already seen…

3/8/2006 20

Message Queues
The window system and processes managed by the OS
communicate using message queues:
* Event queues and sockets are examples of

message-queue primitives.
* One process can push data into

a queue or socket at any time.
* Another process can poll the

queue at its convenience and
read data when its available.

3/8/2006 21

Shared data
You could certainly implement a queue class with
instances which are shared between threads to allow
them to communicate. This is a sensible approach but
sometimes too expensive.
Any piece of shared data can be used for
communication. But we must be sure that changes
made by one thread are fully complete before
another thread sees them. This is the
synchronization problem.

Note: message queues need synchronization too…

3/8/2006 22

Synchronization

Shared-memory communication poses challenges. If
you rely on “mailbox” primitives, things can go wrong:

<blank>0

Flag to show this thread
has written new data

Data

3/8/2006 23

Synchronization

Intuitively, threads that want to write should:
….
wait until thread_id = 0;
set thread_id = 1;
write data;

<blank>0

Data
Flag to show this thread

has written new data

3/8/2006 24

Synchronization

But thread switching can happen anytime, e.g.
….
wait until thread_id = 0;
set thread_id = 1;
write data;

<blank>0

Data
Flag to show this thread

has written new data

3/8/2006 25

Synchronization

A switch between checking the flag and setting it
allows both threads to (incorrectly) write the flag and
their data.
To prevent this, we define critical sections of the
code that cannot be interrupted.

<blank>0

Data
Flag to show this thread

has written new data

3/8/2006 26

Synchronization

e.g. the critical section in the example is:
….
wait until thread_id = 0;
If thread_id = 0
set thread_id = 1;
write data;

<blank>0

Data

Critical section, thread
can’t be pre-empted.

Flag to show this thread
has written new data

3/8/2006 27

Monitors

In C#, critical sections are described with monitors on
specific class instances:

Monitor.Enter(classinstance);
…critical section code updating classinstance…
Monitor.Exit(classinstance);

Which is a “lock” on the classinstance instance. No other
thread can execute that code section on that instance
while it is locked.

3/8/2006 28

Monitors without blocking

When a thread attempts to execute
Monitor.Enter(classinstance);

on an instance that is already locked, it will block until
the other thread has released the lock.

If the thread can be doing something else useful while it
waits for the other thread to finish, it needs a non-
blocking version of Enter(), which is

Monitor.TryEnter(classinstance);

Which always returns immediately: true if the lock is
acquired, false otherwise.

3/8/2006 29

Monitors
Monitors are a good primitive for synchronization, but
can be tricky to write.

You should keep critical code sections “small,” and avoid
doing anything that could take a long time…

If your class instance is “large” (e.g. representing a
database), try to break it down to localize the lock.

And be very careful of waiting for state changes made
by other threads..

3/8/2006 30

Monitors and Exceptions

You need to be very careful when using monitors because
if there is an exception in locked code, the class
instance may remain locked (see readings).
If an exception is possible, there should be a
try…finally
block around the critical section, and the Monitor.Exit()
call should be in the finally block.

See also the lock(..) statement which does exception
handling automatically.

3/8/2006 31

Threading Do’s

Do use threads in interactive applications to deal
with asynchronous events: network, files, media etc.

Do keep threads as independent as possible by
creating separate class instances (or separate
classes) for each thread.

Use shared variables for communication, and choose
appropriate primitives: add buffering (queues) if
tight synchronization is not needed or desired.

3/8/2006 32

Threading Do’s

Do use monitors to localize critical sections to
particular class instances.

If you use a large shared datastore (a “database”),
consider dividing it into small class instances
(“records”) that can be updated independently.

3/8/2006 33

Threading Dont’s

Don’t attempt to communicate from one thread to
another by “calling” the other thread’s methods – it
is not thread-safe.

Don’t share too many class instances between
threads and attempt to synchronize them all. This
leads to many kind of disaster.

Don’t overdo monitor’ed code, the more code that’s
locked, the harder it is for other threads to run, and
you may cause a deadlock.

3/8/2006 34

Break

3/8/2006 35

Model-View-Controller
Architecture for interactive apps
* Introduced by Smalltalk developers at PARC

Partitions application in a way that is
* Scalable
* Maintainable

Model

View

Controller

3/8/2006 36

Model-View-Controller
Microsoft version:
Document/View project type (MFC) available in Visual
Studio
Creating one of these initializes a “view” class and a
“document” (model) class.

Model

View

Controller

3/8/2006 37

Example Application

Blue circles: 4
Cardinal squares: 2

3/8/2006 38

Model

Information the app is trying to manipulate
Representation of essential data
* Circuit for a CAD program
* Shapes in a drawing program

Model
View

Controller

3/8/2006 39

View

Implements a visual display of the model
May have multiple views
* e.g., shape view and numerical view

Model
View

Controller

3/8/2006 40

Multiple Views

Blue circles: 4
Cardinal squares: 2

3/8/2006 41

View

Implements a visual display of the model
May have multiple views
* e.g., shape view and numerical view

Any time the model is changed, each view
must be notified so that it can change later
* e.g., adding a new shape

Model
View

Controller

3/8/2006 42

Controller

Receives all input events from the user
Decides what they mean and what to do
* Communicates with view to determine which

objects are being manipulated (e.g., selection)
* Calls model methods to make changes on objects

+ model makes change and notifies views to update

Model
View

Controller

3/8/2006 43

Controller

Blue circles: 4
Cardinal squares: 2

3/8/2006 44

Controller

Blue circles: 4
Cardinal squares: 2

3/8/2006 45

Relationship of View & Controller

“pattern of behavior in response to user events
(controller issues) is independent of visual
geometry (view issues)”

Controller must contact view to interpret what
user events mean (e.g., selection)

3/8/2006 46

Combining View & Controller
View and controller are tightly intertwined
* Lots of communication between the two

Almost always occur in pairs
* i.e., for each view, need a separate controller

Many architectures combine into a single
class (e.g. MS MFC)

Model
View

Controller

3/8/2006 47

Why MVC?
Combining MVC into one class or using global
variables will not scale
* Model may have more than one view
* Each view is different and needs update when model

changes
Separation eases maintenance
* Easy to add a new view later
* New model info may be needed, but old views still

work
* Can change a view later, e.g., draw shapes in 3-d

3/8/2006 48

Adding Views Later

Blue circles: 4
Cardinal squares: 2

3/8/2006 49

Event Flow

Creating a new shape

3/8/2006 50

Event Flow (cont.)

Assume blue circle selected

Blue circles: 0
Cardinal squares: 0

3/8/2006 51

Event Flow (cont.)

Press mouse over tentative position
Windowing system identifies proper window for event
Controller for drawing area gets mouse click event
Checks mode and sees “circle”
Calls models AddCircle method with new position

Blue circles: 0
Cardinal squares: 0

3/8/2006 52

Event Flow (cont.)

AddCircle adds new circle to model’s list of objects
Model then notifies list of views of change
* Drawing area view and text summary view

Views notifies windowing system of “damage”
* Both views notify WS without making changes yet!

Blue circles: 0
Cardinal squares: 0

3/8/2006 53

Event Flow (cont.)

Views return to model, which returns to controller
Controller returns to event handler
Event handler notices damage requests pending and
responds
If one of the views was obscured, it would be ignored

Blue circles: 0
Cardinal squares: 0

3/8/2006 54

Event Flow (cont.)

Event handler calls view’s Redraw methods with
damaged area
Views redraw all objects in model that are in damaged
area

Blue circles: 1
Cardinal squares: 0

3/8/2006 55

Summary

Callbacks and Delegates
Multi-threaded programming
Model-view controller

