CS160: Sensori-motor Models

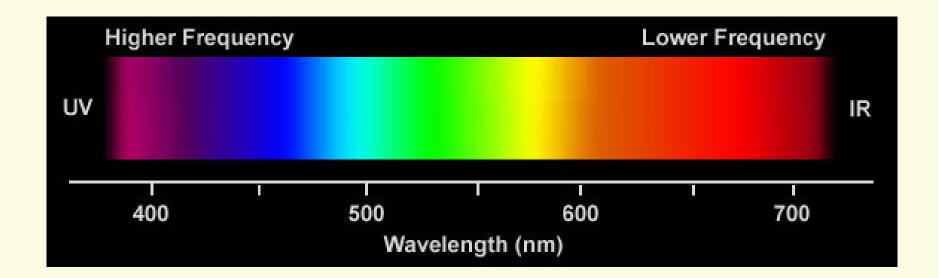
Prof Canny

Why Model Human Performance?

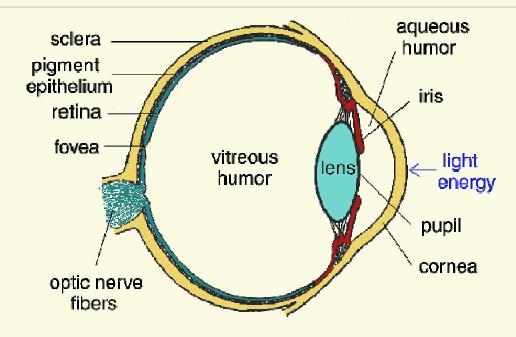
- ✓ To test understanding of behavior
- ✓ To predict impact of new technology we can build a simulator to evaluate user interface designs

Outline

Color perception


✓ MHP: Model Human Processor

Memory principles


Why Study Color?

Color can be a powerful tool to improve user interfaces, but its inappropriate use can severely reduce the performance of the systems we build

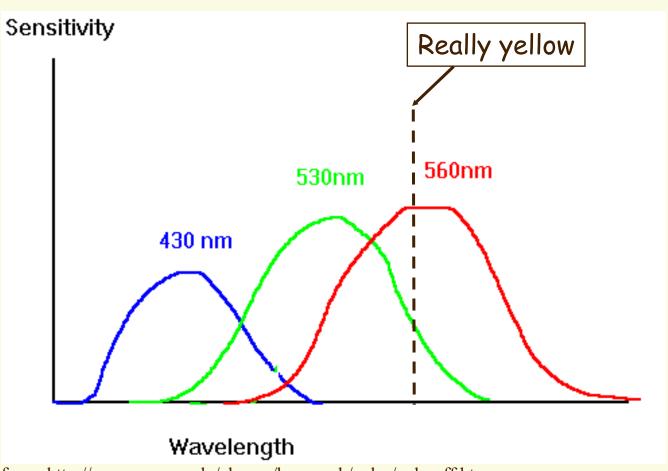
Visible Spectrum

Human Visual System

- Light passes through lens
- ✓ Focussed on retina

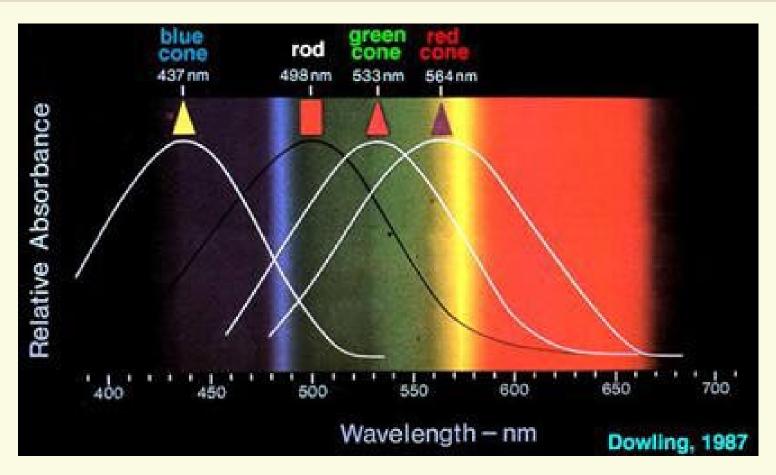
Retina

- Retina covered with light-sensitive receptors.
 - * Rods
 - + Primarily for night vision & perceiving movement
 - + Sensitive to broad spectrum of light
 - + Can't discriminate between colors
 - + Sense intensity or shades of gray
 - * Cones
 - + Used to sense color


Retina

- ✓ Center of retina has most of the cones →?
 - * Allows for high acuity of objects focused at center, good color perception.
- ✓ Edge of retina is dominated by rods →?
 - * Allows detecting motion of threats in periphery, poor color sensitivity there.
- What's the best way to perceive something in near darkness?
 - * Look slightly away from it.

Color Perception via Cones


- "Photopigments" used to sense color
- ✓ 3 types: blue, green, "red" (really yellow)
 - * Each sensitive to different band of spectrum
 - * Ratio of neural activity of the $3 \rightarrow color$
 - + other colors are perceived by combining stimulation

Color Sensitivity

from: http://www.cs.gsu.edu/classes/hypgraph/color/coloreff.htm

Color Sensitivity

from http://insight.med.utah.edu/Webvision/index.html

Distribution of Photopigments

- Not distributed evenly
 - * Mainly reds (64%) & very few blues (4%) →?
 - + insensitivity to short wavelengths
 - ~ cyan to deep-blue
- Center of retina (high acuity) has no blue cones
 - * Disappearance of small blue objects you fixate on

Color Sensitivity & Image Detection

- Most sensitive to the center of the spectrum
 - * Pure blues & reds must be brighter than greens & yellows
- Brightness determined mainly by R+G
- Shapes detected by finding edges
 - * Combine brightness & color differences for sharpness
- ✓ Implications?
 - * Hard to deal w/ blue edges & blue shapes

Color Sensitivity (cont.)

✓ As we age

- * Lens yellows & absorbs shorter wavelengths **?
 - + sensitivity to blue is even more reduced
- * Fluid between lens and retina absorbs more light
 - + perceive a lower level of brightness

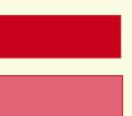
✓ Implications?

- * Don't rely on blue for text or small objects!
- * Older users need brighter colors

Focus

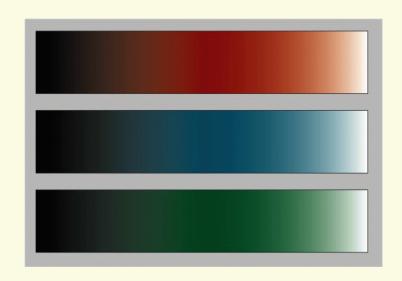
- Different wavelengths of light focused at different distances behind eye's lens
 - * Need for constant refocusing \rightarrow ?
 - + Causes fatigue
 - * Be careful about color combinations
- ✓ Pure (saturated) colors require more focusing then less pure (desaturated)
 - * Don't use saturated colors in UIs unless you really need something to stand out (stop sign)

Color Deficiency (also known as "color blindness")

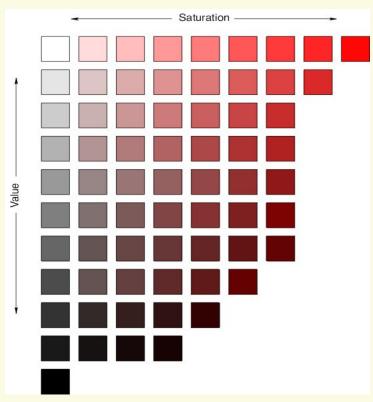

- Trouble discriminating colors
 - * Besets about 9% of population
 - * Two major types
- Different photopigment response
 - * Reduces capability to discern small color diffs
 - + particularly those of low brightness
 - * Most common
- Red-green deficiency is best known
 - * Lack of either green or red photopigment \rightarrow ?
 - + can't discriminate colors dependent on R & G

Color Deficiency Example

Add/Update S	hipping Information
	We found an error while verifying your shipping address. We've marked the problem in red for you.
Update the address	thook of
	ion is marked in GREEN CAPS.
HELP for questions	
NICKNAME:	MYSELF
	Please assign a "hickname" for the person you're shipping to. You may change or delete this information at any time.
FIRST NAME:	DOUGLAS MIDDLE INITIAL:
LAST NAME:	
ADDRESS:	245 SAN JOSE RD
	(International use only)
CITY:	LOS GATOS
STATE/PROVINCE:	California 💌
	Includes APO and FPO. Use "Other" if country is not USA or Canada.
ZIP/POSTAL CODE:	95333
COUNTRY:	Select a country
SHIPPING METHOD:	In the U.S.: HELP International: HELP Standard UPS Canada Canada Post (2 business days plus (4-10 business days)

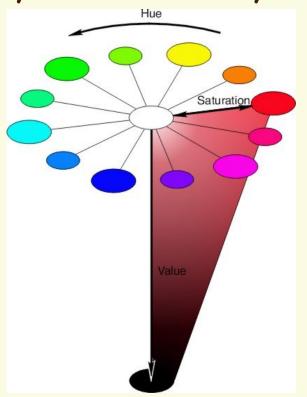

Color Components

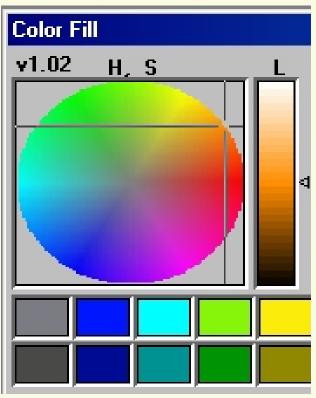
- ✓ Hue
 - * property of the wavelengths of light (i.e., "color")
- ✓ Lightness (or value)
 - * How much light appears to be reflected from the object
- ✓ Saturation
 - * Purity of the hue relative to gray
 - + e.g., red is more saturated than pink
 - * Color is mixture of pure hue & gray
 - + portion of pure hue is the degree of saturation



Color Components (cont.)

Lightness

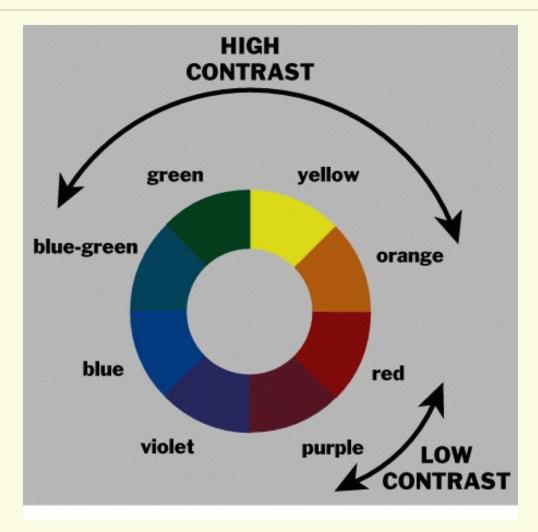

✓ Saturation



from http://www2.ncsu.edu/scivis/lessons/colormodels/colormodels2.html#saturation.

Color Components (cont.)

✓ Hue, Saturation, Value model (HSV)



from http://www2.ncsu.edu/scivis/lessons/colormodels/color-models2.html#saturation.

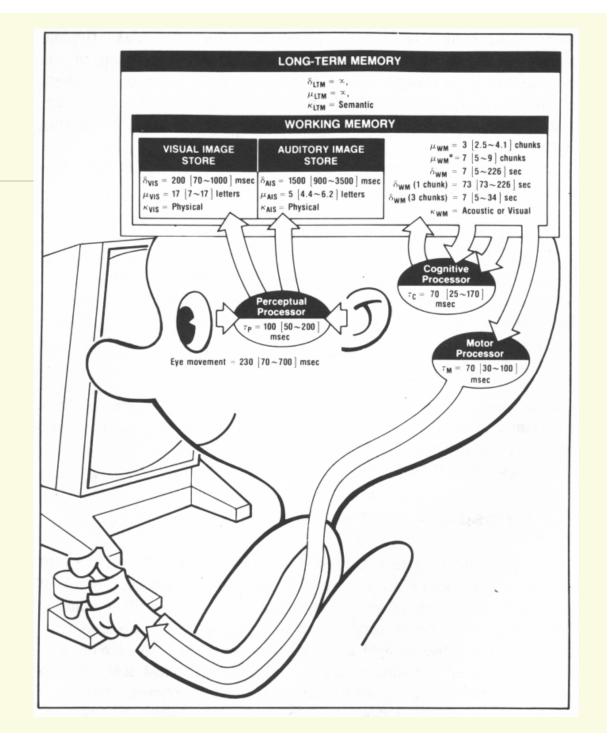
Color Guidelines

- Avoid simultaneous display of highly saturated, spectrally extreme colors
 - * e.g., no cyans/blues at the same time as reds, why? + refocusing!
 - * Desaturated combinations are better \rightarrow pastels

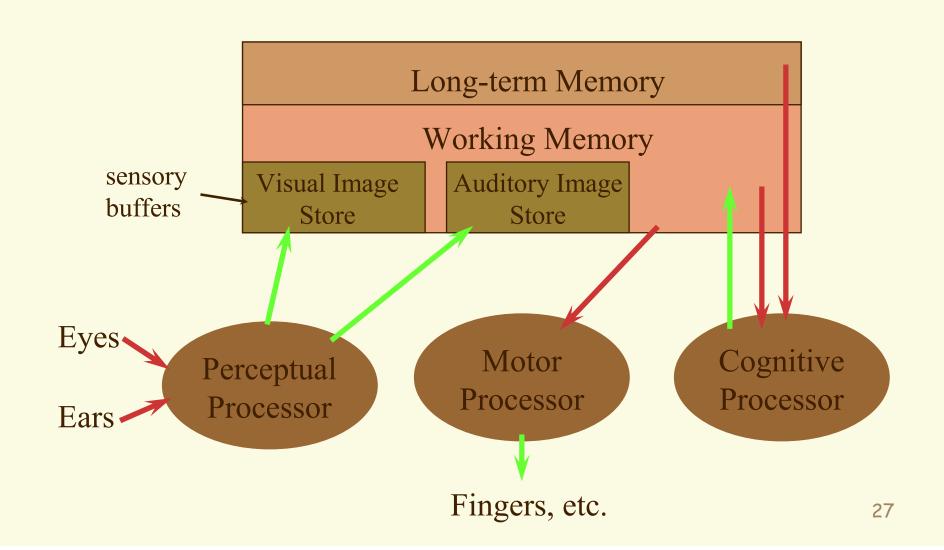
Pick Non-adjacent Colors on the Hue Circle

Color Guidelines (cont.)

- ✓ Size of detectable changes in color varies
 - * Hard to detect changes in reds, purples, & greens
 - * Easier to detect changes in yellows & blue-greens
- Older users need higher brightness levels to distinguish colors
- ✓ Hard to focus on edges created by color alone?
 - * Use both brightness & color differences


Color Guidelines (cont.)

- ✓ Avoid red & green in the periphery why?
 - * lack of RG cones there -- yellows & blues work in periphery
- Avoid pure blue for text, lines, & small shapes
 - * blue makes a fine background color
 - * avoid adjacent colors that differ only in blue
- Avoid single-color distinctions
 - * mixtures of colors should differ in 2 or 3 colors
 - + e.g., 2 colors shouldn't differ only by amount of red
 - * helps color-deficient observers


Break

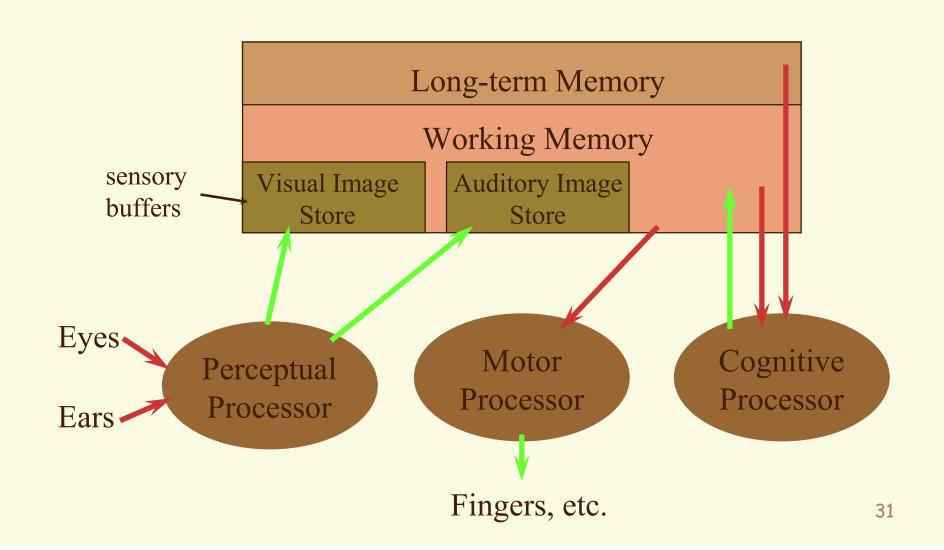
- Reminder that hi-fi reports are due on Monday.
- ✓ 10-minute presentations should also be placed on the Swiki by Monday.
- ✓ Schedule: groups 1-6 Monday, groups 7-11 Wednesday.

Model Human Processor

The Model Human Processor

What is missing from MHP?

- ✓ Haptic memory
 - * For touch
- Moving from sensory memory to WM
 - * Attention filters stimuli & passes to WM
- Moving from WM to LTM
 - * Rehearsal


MHP Basics

- Based on empirical data
 - * Years of basic psychology experiments in the literature
- ✓ Three interacting subsystems
 - * Perceptual, motor, cognitive

MHP Basics

- ✓ Sometimes serial, sometimes parallel
 - * Serial in action & parallel in recognition
 - + Pressing key in response to light
 - + Driving, reading signs, & hearing at once
- ✓ Parameters
 - * Processors have cycle time (T) ~ 100-200 ms
 - * Memories have capacity, decay time, & type

The Model Human Processor

Memory

Working memory (short term)

- * Small capacity (7 ± 2 "chunks")
 - + 6174591765 vs. (617) 459-1765
 - + DECIBMGMC vs. DEC IBM GMC
- * Rapid access (~ 70ms) & decay (~200 ms)
 - + pass to LTM after a few seconds

Long-term memory

- * Huge (if not "unlimited")
- * Slower access time (~100 ms) w/ little decay

MHP Principles of Operation

Recognize-Act Cycle of the CP

- * On each cycle contents in WM initiate actions associatively linked to them in LTM
- * Actions modify the contents of WM

✓ Discrimination Principle

- * Retrieval is determined by candidates that exist in memory relative to retrieval cues
- * Interference by strongly activated chunks

Principles of Operation (cont.)

- ✓ Variable Cog. Processor Rate Principle
 - * CP cycle time T_c is shorter when greater effort
 - * Induced by increased task demands/information
 - * Decreases with practice

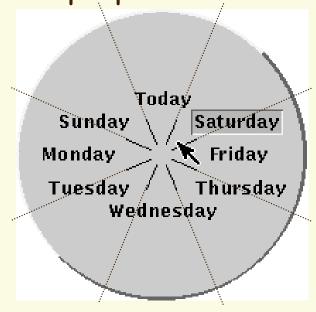
Principles of Operation (cont.)

Fitts' Law

- * Moving hand is a series of microcorrections, each correction takes $T_{p+}T_{c+}T_m = 240$ msec
- * Time T_{pos} to move the hand to target size S which is distance D away is given by:

$$T_{pos} = a + b \log_2 (D/S + 1)$$

✓ Summary

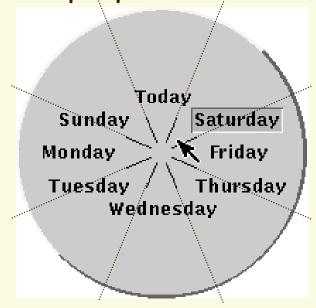

* Time to move the hand depends only on the *relative* precision required

Fitts' Law Example

Pop-up Linear Menu

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Pop-up Pie Menu


✓ Which will be faster on average?

Fitts' Law Example

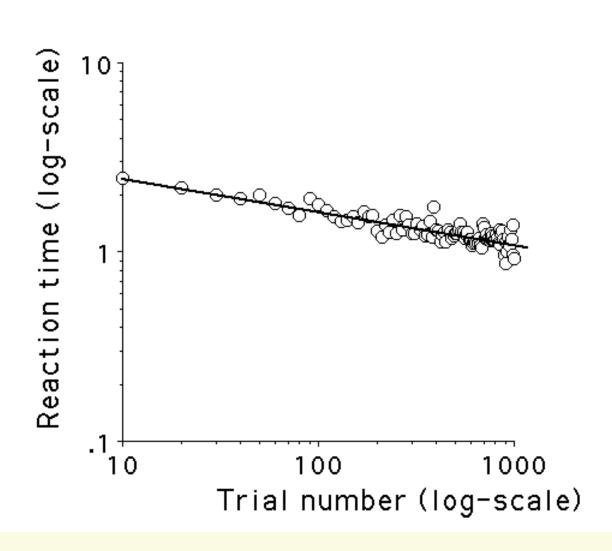
Pop-up Linear Menu

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
·

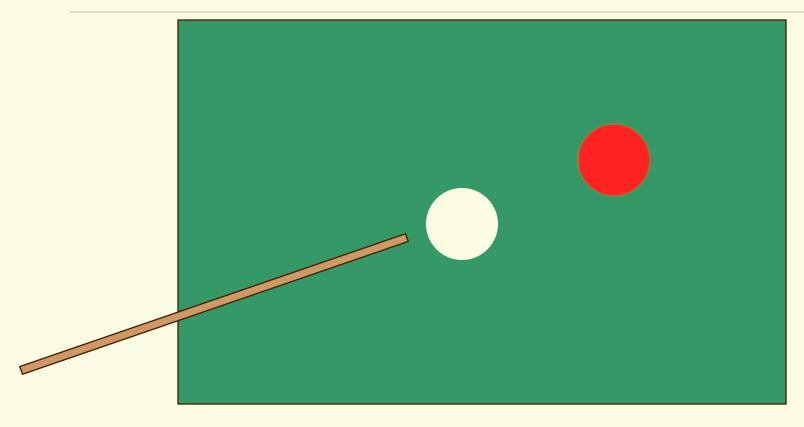
Pop-up Pie Menu

- ✓ Pie menu: bigger targets for a given distance;
- ✓ 6.2 / k vs. 2 / k

Pie Menus

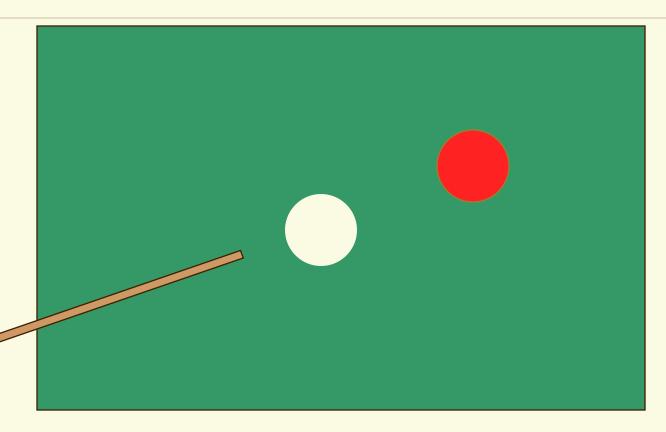

- ✓ Pie menus have proven advantages, but you rarely see them (QWERTY phenomenon?).
- ✓ Examples: Maya (animation tool), and many research systems like DENIM.
- ✓ Still, open-source code for them exists.

Principles of Operation (cont.)

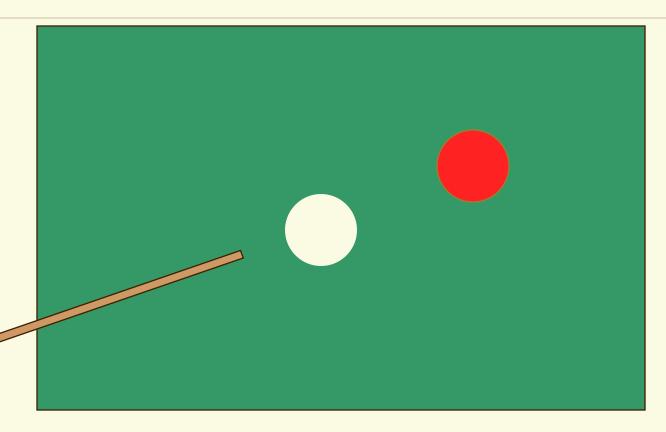

Power Law of Practice

- * Task time on the nth trial follows a power law $T_n = T_1 n^{-a} + c$, where a = .4, c = limiting constant
- * i.e., you get faster the more times you do it!
- * Applies to skilled behavior (sensory & motor)
- * Does not apply to knowledge acquisition or quality

Power Law of Practice



Perceptual Causality


✓ How soon must red ball move after cue ball collides with it?

Perceptual Causality

✓ Must move in < Tp (100 msec)</p>

Perceptual Causality

✓ Must move in < Tp (100 msec)</p>

Perception

- Stimuli that occur within one PP cycle fuse into a single concept
 - * Frame rate necessary for movies to look real?
 - + time for 1 frame < Tp (100 msec) -> 10 frame/sec.
 - * Max. morse code rate can be similarly calculated
- Perceptual causality
 - * Two distinct stimuli can fuse if the first event appears to *cause* the other
 - * Events must occur in the same cycle

Simple Experiment

- ✓ Volunteer
- Start saying colors you see in list of words
 - * When slide comes up
 - * As fast as you can
- Say "done" when finished
- ✓ Everyone else time it...

Paper

Home

Back

Schedule

Page Change

Simple Experiment

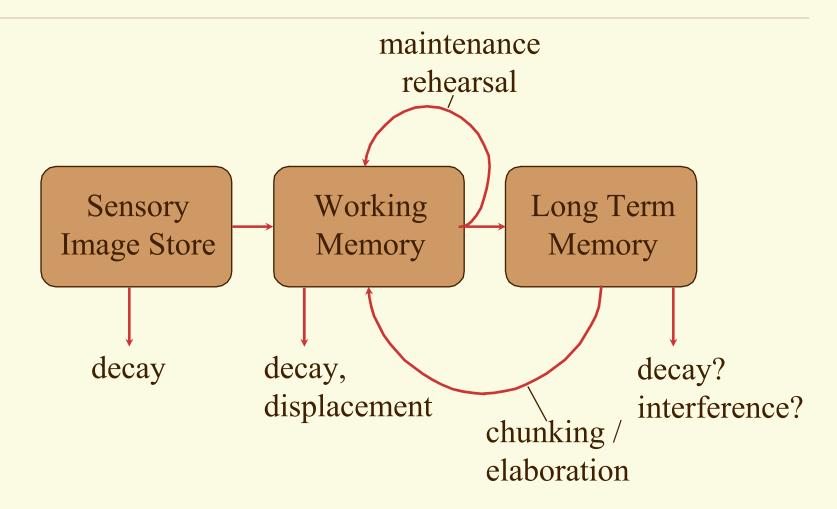
- ✓ Do it again
- Say "done" when finished

Blue

Red

Black

White


Green

Yellow

Memory

- ✓ Interference
 - * Two strong cues in working memory
 - * Link to different chunks in long term memory

Stage Theory

Stage Theory

- Working memory is small
 - * Temporary storage
 - + decay
 - + displacement
- Maintenance rehearsal
 - * Rote repetition
 - * Not enough to learn information well
- Answer to problem is organization
 - * Faith Age Cold Idea Value Past Large
 - * In a show of faith, the cold boy ran past the church

Elaboration

- Relate new material to already learned material
- Recodes information
- Attach meaning (make a story)
 - * e.g., sentences
- Visual imagery
- Organize (chunking)
- Link to existing knowledge, categories

LTM Forgetting

- Causes for not remembering an item?
 - * 1) Never stored: encoding failure
 - * 2) Gone from storage: storage failure
 - * 3) Can't get out of storage: retrieval failure

Recognition over Recall

- ✓ Recall
 - * Info reproduced from memory
- Recognition
 - * Presentation of info provides knowledge that info has been seen before
 - * Easier because of cues to retrieval
- ✓ We want to design UIs that rely on recognition!

Facilitating Retrieval: Cues

- Any stimulus that improves retrieval
 - * Example: giving hints
 - * Other examples in software?
 - + icons, labels, menu names, etc.
- Anything related to
 - * Item or situation where it was learned
- Can facilitate memory in any system
- What are we taking advantage of?
 - * Recognition over recall!

Summary

Color perception

✓ MHP: Model Human Processor

Memory principles