CS 160: Lecture 16

Professor John Canny

Qualitative vs. Quantitative Studies

- Qualitative: What we've been doing so far:
 - * Contextual Inquiry: trying to understand user's tasks and their conceptual model.
 - * Usability Studies: looking for critical incidents in a user interface.
- In general, we use qualitative methods to:
 - * Understand what's going on, look for problems, or get a rough idea of the usability of an interface.

Quantitative Studies

Quantitative:

- * Use to reliably measure something
- * Can compare different designs, or design changes

Examples:

- * Time to complete a task.
- * Average number of errors on a task.
- * Users' ratings of an interface *:
 - + Ease of use, elegance, performance, robustness, speed,...
- * You could argue that users' perception of speed, error rates etc is more important than their actual values.

Outline

Basics of quantitative methods

- * Random variables, probabilities, distributions
- * Review of statistics
- * Collecting data
- * Analyzing the data

Random variables

- Random variables take on different values according to a *probability distribution*.
- \blacksquare E.g. X \in {1, 2, 3} is a discrete random variable with three possible values.
- To characterize the variable, we need to define the probabilities for each value:

$$Pr[X=1] = Pr[X=2] = \frac{1}{4}, \quad Pr[X=3] = \frac{1}{2}$$

On each trial or experiment, we should see one of these three values with the given probability.

Random variables and trials

- When we examine X after a series of trials, we might see the values: 1, 1, 3, 2, 3, 1, 3, 3, 3, 1, 2,...
- \blacksquare We often want to denote the value of X on a particular trial, such as X_i for the i^{th} trial.
- Then the above sequence could also be written as:

$$X_1 = 1$$
, $X_2 = 1$, $X_3 = 3$, $X_4 = 2$, $X_5 = 3$, $X_6 = 1$, $X_7 = 3$, $X_8 = 3$, $X_9 = 3$, $X_{10} = 1$, $X_{11} = 2$,...

For large N, the sequence $\{X_1,...X_N\}$ should contain the value 3 about N/2 times, the value 2 about N/4 times, and the value 1 about N/4 times.

Random variables and trials

Q: How would you represent a fair coin toss with a random variable?

$$X \in \{H,T\}$$
 $Pr[X=H] = \frac{1}{2}$ $Pr[X=T] = \frac{1}{2}$

Q: How would you represent a 6-sided die toss?

$$Y \in \{1,2,3,4,5,6\}, Pr[Y = i] = 1/6 \text{ for } 1 \le i \le 6$$

 $Pr[Y = i] = 0 \text{ otherwise}$

Independence

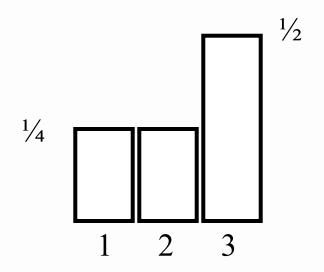
- Consider a random variable X which is the value of a fair die toss. Now consider Y, which is the value of another fair die toss.
- Knowing the value of X tells us nothing about the value of Y and vice versa. We say X and Y are independent random variables.
- However, if we defined Z = X + Y, then Z is dependent on X and vice versa (large values of X increase the probability of large values of Z, and Z must be at least X+1).

Independent Trials

- We will often want to use random variables whose values on different trials are independent.
- If this is true, we say the experiment has independent trials.
- Example: tossing a fair die many times. Each toss is a random variable which is independent of the other trials.

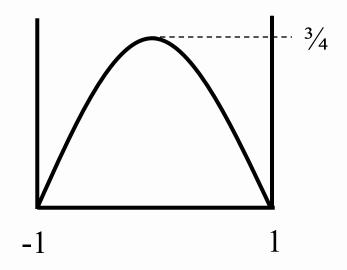
Random variables

ignitial Given $Pr[X=1] = Pr[X=2] = \frac{1}{4}$, $Pr[X=3] = \frac{1}{2}$ we can also represent the distribution with a graph:



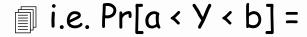
Continuous Random variables

- The probability must be defined by a *probability* density function (pdf).
- \blacksquare E.g. p(Y) = $\frac{3}{4}$ (1 Y²)
- Note that the area under the curve is the total probability, which must be 1.

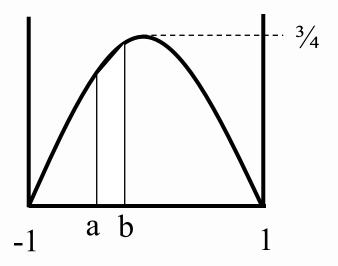


Continuous Random variables

The area under the pdf curve between two values gives the probability that the value of the variable lies in that range.



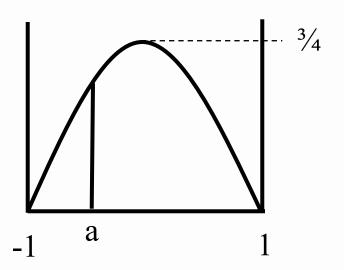
$$\int_a^b \frac{3}{4} (1 - Y^2) dY$$



Meaning of the distribution

The limit of the area as the range [a,b] goes to zero gives the value of p(Y)

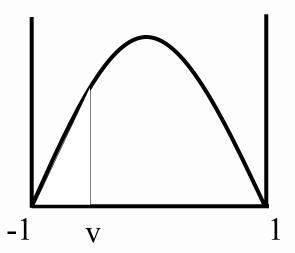
$$Pr[a < Y < a+dY] = p(Y) dY$$



CDF: Cumulative Distribution

The CDF is the area under the distribution from -∞ to some value v

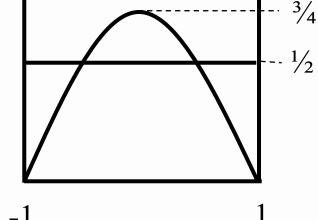
 \bigcirc So C(-∞) = 0 and C(∞) = 1



Mean and Variance

The mean is the expected value of the variable. Its roughly the average value of the variable over many trials.

In this case $E[Y] = \frac{1}{2}$

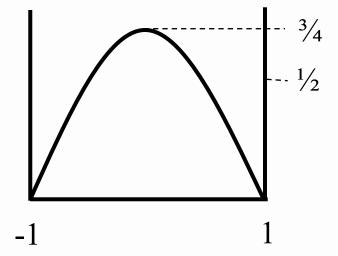


Variance

Variance is the expected value of the square difference from the mean. Its roughly the squared "width" of the distribution.

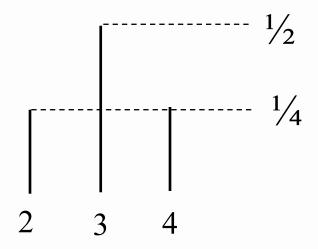
$$\text{[Var[Y] = } \int_{\min Y}^{\max Y} (Y - \overline{Y})^2 p(Y) dY$$

Standard deviation std[X] is the square root of variance.



Mean and Variance

What is the mean and variance for the following distribution?



Sums of Random Variables

 \blacksquare For any X_1 and X_2 , the expected value of a sum is the sum of the expected values:

$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

 \blacksquare For *independent* X_1 and X_2 , the variance of the sum is also the sum of the variances:

$$Var[X_1 + X_2] = Var[X_1] + Var[X_2]$$

Identical trials

For independent trials with the same mean and variance E[X] and Var[X],

$$E[X_1 + ... + X_n] = n E[X]$$

$$Var[X_1 + ... + X_n] = n Var[X]$$

$$Std[X_1 + ... + X_n] = \sqrt{n} Std[X]$$

Where
$$Std[X] = Var[X]^{1/2}$$

Identical trials

If we define $Avg(X_1, ..., X_n) = (X_1 + ... + X_n)/n$, then

$$E[Avg(X_1, ..., X_n)] = E[X]$$

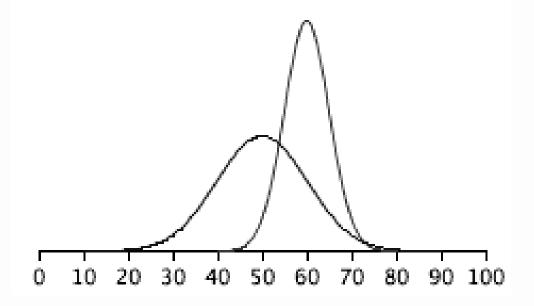
While

$$Std[Avg(X_1, ..., X_n)] = (1/\sqrt{n}) Std[X]$$

i.e. the standard deviation in an average value decreases with n, the number of trials.

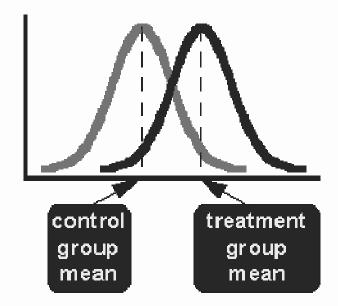
Identical trials

- i.e. the distribution narrows in a relative sense.
- The blue curve is the sum of 100 random trials, the red curve is the sum of 200.



Detecting differences

- The more times you repeat an experiment, the narrower the distributions of measured average values for two conditions.
- So the more likely you are to detect a difference in a test variable between two cases.



Break

4/3/2006 23

Variable types

- Independent Variables: the ones you control
 - * Aspects of the interface design
 - * Characteristics of the testers
 - * Discrete: A, B or C
 - * Continuous: Time between clicks for double-click
- Dependent variables: the ones you measure
 - * Time to complete tasks
 - * Number of errors

Some statistics

- Variables X & Y
- A relation (hypothesis) e.g. X > Y
- We would often like to know if a relation is true
 - * e.g. X = time taken by novice users
 - * Y = time taken by users with some training
- To find out if the relation is true we do experiments to get lots of x's and y's (observations)
- \blacksquare Suppose avg(x) > avg(y), or that most of the x's are larger than all of the y's. What does that prove?

Significance

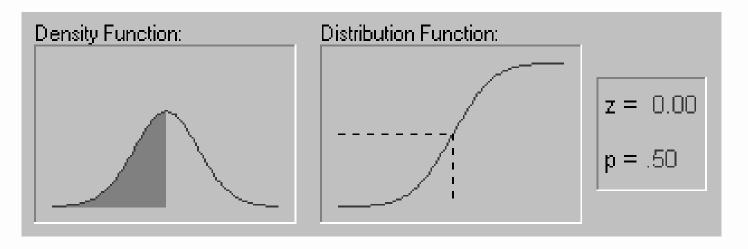
- The significance or p-value of an outcome is the probability that it happens by chance if the relation does *not* hold.
- E.g. p = 0.05 means that there is a 1/20 chance that the observation happens if the hypothesis is false.
- So the smaller the p-value, the greater the significance.

Significance

- For instance p = 0.001 means there is a 1/1000 chance that the observation would happen if the hypothesis is false.
 - So the hypothesis is almost surely true.
- Significance increases with number of trials.
- CAVEAT: You have to make assumptions about the probability distributions to get good p-values. There is always an implied model of user performance.

Normal distributions

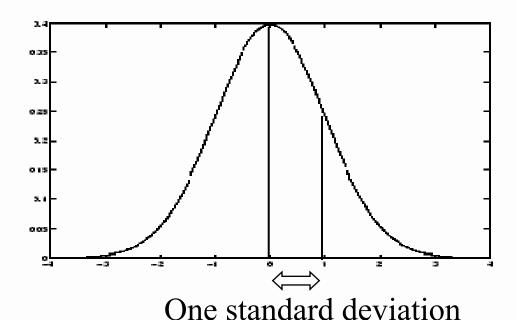
Many variables have a Normal distribution (pdf)



- At left is the density, right is the cumulative prob.
- Normal distributions are completely characterized by their *mean* and *variance* (mean squared deviation from the mean).

Normal distributions

The std. deviation for a normal distribution occurs at about 60% of its value



4/3/2006

T-test

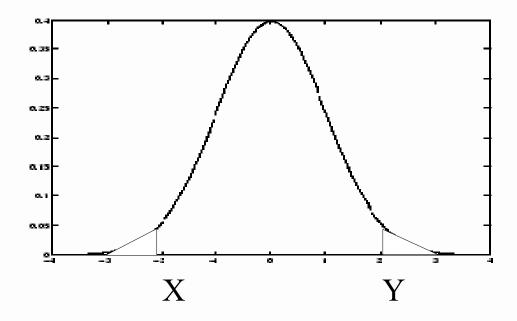
The T-test asks for the probability that E[X] > E[Y] is false.

i.e. the null hypothesis for the T-test is whether E[X] = E[Y].

What is the probability of that given the observations?

T-test

We actually ask for the probability that E[X] and E[Y] are at least as different as the observed means.



- Example: prove that task 1 is faster on design A than design B.
 - * Suppose the average time for design B is 20% higher than A.
 - * Suppose subjects' times in the study have a std. dev. which is 30% of their mean time (typical).

How many subjects are needed?

- Example: prove that task 1 is faster on design A than design B.
 - * Suppose the average time for design B is 20% higher than A.
 - * Suppose subjects' times in the study have a std. dev. which is 30% of their mean time (typical).
- How many subjects are needed?
 - * Need at least 13 subjects for significance p=0.01
 - * Need at least 22 subjects for significance p=0.001
 - * (assumes subjects use both designs)

Analyzing the Numbers (cont.)

- i.e. even with strong (20%) difference, need lots of subjects to prove it.
- Usability test data is quite variable
 - * 4 times as many tests will only narrow range by 2x
 - * breadth of range depends on sqrt of # of test users
 - * This is when surveys or automatic usability testing can help

Lies, damn lies and statistics...

- A common mistake (made by famous HCI researchers *):
- Increasing n, the number of trials, by running each subject several times.
- No! the analysis only works when trials are independent.
- All the trials for one subject are dependent, because that subject may be faster/slower/less error-prone than others.

* - making this error will not help you become a famous HCI researcher ©.

- What you can do to get better significance:
 - * Run each subject several times, compute the average for each subject.
 - * Run the analysis as usual on subjects' average times, with n = number of subjects.
- This decreases the per-subject variance, while keeping data independent.

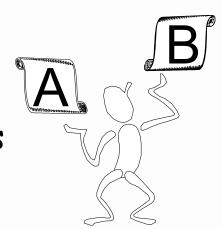
- Another common mistake:
- An experiment fails to find a significant difference between test and control cases (say at p = 0.05), so you conclude that there is no significant difference.
- No!
- A difference-of-averages test can only confirm (with high probability) that there is a difference. Failure to prove a significant difference can be because
 - * There is no difference, OR
 - * The number of subjects in the experiment is too small

- Example, what should you conclude if you find no significant difference at p = 0.05, but there is a difference at p = 0.2?
- First of all, the result does not confirm a significant difference with any confidence.
- However, while there may not be a significant difference, it is more likely that there is but it is too weak at the N chosen. Therefore, try repeating the experiment with a larger N.

- You write a paper with 20 different studies, all of which demonstrate effects at p=0.05 significance. They're all right, right?
- Actually, there is significant probability (as high as 63%) that there is no real effect in at least one case.
- Remember a p-value is an upper bound on the probability of no effect, so there is always a chance the experiment gives the wrong result.

Using Subjects

- Between subjects experiment
 - * Two groups of test users
 - * Each group uses only 1 of the systems



- Within subjects experiment
 - * One group of test users
 - * Each person uses both systems

Between subjects

- Two groups of testers, each use 1 system
- Advantages:
 - * Users only have to use one system (practical).
 - * No learning effects.

Disadvantages:

- * Per-user performance differences confounded with system differences:
- * Much harder to get significant results (many more subjects needed).
- * Harder to even predict how many subjects will be needed (depends on subjects).

Within subjects

- One group of testers who use both systems
- Advantages:
 - * Much more significance for a given number of test subjects.

Disadvantages:

- * Users have to use both systems (two sessions).
- * Order and learning effects (can be minimized by experiment design).

Example

- Same experiment as before:
 - * System B is 20% slower than A
 - * Subjects have 30% std. dev. in their times.
- Within subjects:
 - * Need 13 subjects for significance p = 0.01
- Between subjects:
 - * Typically require 52 subjects for significance p = 0.01.
 - * But depending on the subjects, we may get lower or higher significance.

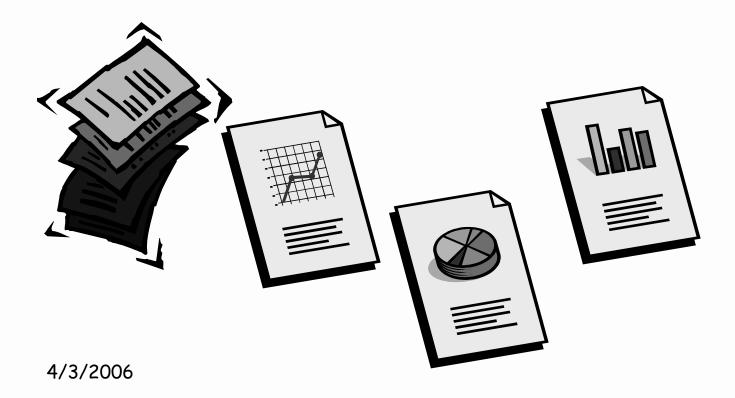
Experimental Details

Learning effects

- * Subjects do better when they repeat a trial
- * This can bias within-subjects studies
- * So "balance" the order of trials with equal numbers of A-B and B-A orders.
- What if someone doesn't finish?
 - * Multiply time and number of errors by 1/fraction of trial that they completed.
- Pilot study to fix problems
 - * Do 2, first with colleagues, then with real users

Reporting the Results

- Report what you did & what happened
- Images & graphs help people get it!



Summary

- Random variables
- Distributions
- Statistics (and some hazard warnings)
- Experiment design guidelines