CS 160: Lecture 26

Professor John Canny

5/8/2006

Where is HCI going?

What do you think?

5/8/2006

2

Some History

- The Dynabook (laptop computer) was conceived in 1968, well ahead of its time.
- As an interim step, Alan Kay and others developed the Xerox Alto, a computer intended for "ordinary people."
- Kay was also working on "Smalltalk" at that time a language for children.
- Smalltalk was guided quite closely by Piaget's principles.
- The Alto had a mouse and windows but it was mostly a "text" machine.
- It also lacked a real use context and appropriate applications.

Xerox Alto

The Star (Xerox Office Systems)

- The Star (1981 and begun in 1975) in particular was a very advanced machine. It had most of the "WI MP" elements we know today.
- The Star was the result of a special group created by Xerox to develop "Office" systems.
- The Star was the result of extensive user testing, and its design has stood the test of time.
- Many design features were better than its successors (e.g. objectoriented editing features)

5/8/2006

The Star's design process

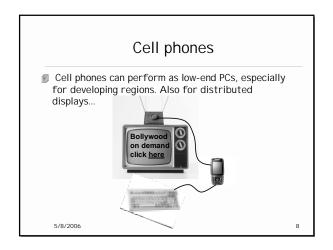
- The Star design team developed a new methodology for system design:
- Task analysis
- Wide range of users
- Usage scenarios
- Decomposition of design:
 - * Display and control interface
 - * User's conceptual model
- Many prototyping cycles
- Desktop metaphor, direct manipulation, WYSI WYG

5/8/2006

Where are computers now?

I ntel's breakdown:

- * Office systems
- * Home
- * Mobile
- * Health care


And in non-traditional computers:

- * Cell phones
- * Game consoles
- * Cable boxes / smart TVs, other smart appliances
- * Automobiles

5/8/2006

6

Cell phones ■ There are 6.5 billion people on earth - only about 1.2 billion in "developed" countries They will buy 800 million mobile phones this year - one person in eight on the planet ■ That's 4x PC or TV unit sales should reach 40% by 2009 - most common "computer" 5/8/2006

Cell phones

- But cell phones are also mobile sensor + multimedia + communications platforms:
- Location sensing (GPS)
- Camera for still or video
- Audio capture or sensing
- Bluetooth (as sensor or sensor connection)

They can "know" about their surroundings, they can learn their user's preferences, and they can capture and share memories.

5/8/2006

Cell phones

- But cell phones are also mobile sensor + multimedia + communications platforms:
- Location sensing (GPS)
- Camera for still or video
- Audio capture or sensing
- Bluetooth (as sensor or sensor connection)

They can "know" about their surroundings, they can learn their user's preferences, and they can capture and share memories.

5/8/2006

10

Mobile Interface Challenges

Did you ever try to find a neighborhood restaurant using a mobile browser...

and find it while you were in the same neighborhood? In a car you might end up in the next county...

Luckily a house stopped this driver before they got into serious trouble.

5/8/2006

Context-Awareness

Context-awareness is widely regarded as the holy grail for next generation mobile applications:

- Location (e.g., video store) heavily shapes the user's likely actions.
- The system can present streamlined choices - "here are your top-10 video suggestions with clickable previews".
- For users this is very convenient.
- Also for vendors...

5/8/2006

Context aware example

Knowledge of user background and context provide great opportunities for pro-active services:

"I t's 7pm and you're in San Francisco, would you like me to find a nearby restaurant?"

5/8/2006

Context aware example

Knowledge of user background and context provide great opportunities for pro-active services:

"I t's 7pm and you're in San Francisco, there is a table available two blocks away at Aqua restaurant, would you like me to book it?"

5/8/2006

Context aware example

Knowledge of user background and context provide great opportunities for pro-active services:

"I t's 7pm and you're in San Francisco, there is a table available two blocks away at Aqua restaurant, and they have a special on Salmon in parchment, would you like me to book it?"

Context aware example

How much do you think the restaurant might be willing to pay me to receive that message?

5/8/2006

Speech recognition example

Consider now a speech recognizing version of this application:

"I t's 7pm and you're in San Francisco, there is a table available two blocks away at Aqua, and they have a special on Salmon in parchment for \$28. Would you like me to book a table, and order the special?"

User: Yes or No

5/8/2006

So what is context?

Much of the work on context-awareness considers only "immediate context":

- $\ensuremath{\blacksquare}$ I nformation that can be sensed or is available where the user is, e.g.
 - * Time
 - * Location
 - * Who is the user, who else is there
 - * What is the user doing

5/8/2006

18

So what is context?

A deeper notion is all the information that allows a system to perform an action the user would want.

In other words to predict a desired outcome from available information. The full scope of that information is:

- Immediate context
- Activity context (roughly the user's history)
- Situational context (what other users do under similar circumstances).

5/8/2006

So what is context?

- Immediate context is what an observer might see in the situation, but without interpreting it.
- Activity context is the history of what that person (or people) have done in similar situations.
- Situational context is the set of things that most people (but strangers) might do in that situation.

5/8/2006

Perceptual Interfaces

- Perceptual interfaces make high-level interpretations of sensor data:
 - * Computer Vision
 - * Speech recognition
 - * Bluetooth, location sensing

5/8/2006 21

Face recognition

5/8/2006

22

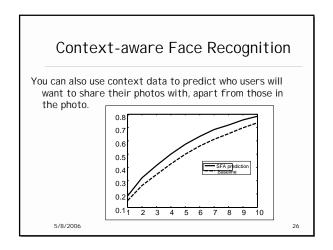
20

Face Recognition

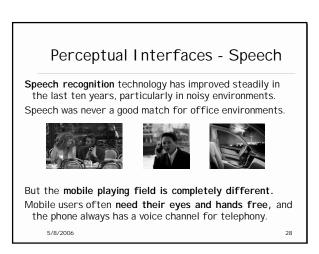
- Face recognition is very useful on phones because:
 - * It allows you to index the people in your photographs for later retrieval.
 - * It allows you to immediately share photos with friends over the network.

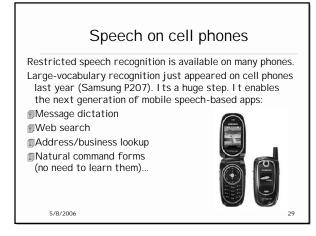
5/8/2006

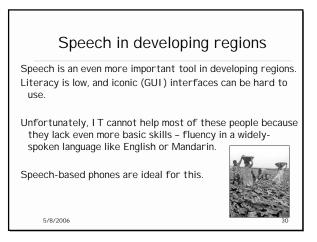
Face Recognition

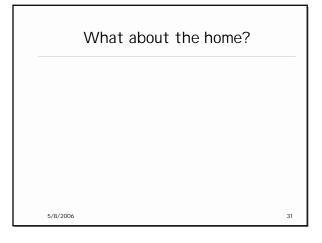

- Face recognition is very useful on phones because:
 - * It allows you to index the people in your photographs for later retrieval.
 - * It allows you to immediately share photos with friends over the network.

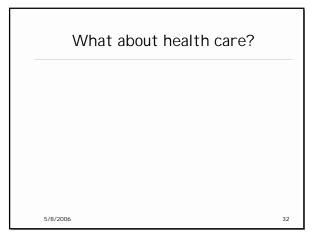
5/8/2006


23


24


Context-aware Face Recognition Context data (time, place, contact list) improves face recognition significantly, in fact: Recognition method Accuracy: I mage analysis alone 30% Context analysis alone 55% Context+Content analysis 67%




Computer Vision for mouse input TinyMotion performs image analysis on successive frames captured from the phone's camera to detect motion of the background. This provides real-time mouse input.

Coming Soon Special issue of ACM Queue magazine on context-aware and perceptual interfaces (summer 06) JFC guest Ed. The foot of Grid and Their No. Her Orders Grid and Their No.