
Smartphone Development Tutorial 

CS 160, March 7, 2006 

Creating a simple application in Visual Studio 2005 and running it using the 
emulator 

1. In Visual Studio 2005,  create a project 
for the Smartphone platform (Smart 
Device Windows Mobile 5.0 
Smartphone).  To make deploying to the 
actual phone work, you should choose the 
“Device Application (1.0)” template. (The 
phone doesn’t have enough memory to 
install version 2.0 of the compact 
framework.) 

2. Set the “Target device” to “Windows 
Mobile 5 Smartphone QVGA Emulator”.  

o Right-clicking your current 
application in the Solution 
Explorer, selecting “Properties”, 
and selecting the “Devices” tab.  
(The application is the second 
item on the list, not the top level 
‘Solution’ entry.) 

o Change the target device using the 
drop-down menu. 

o Also uncheck the “Deploy the 
latest version of the .NET Compact Framework” checkbox. 

3. By default, the “Device Application (1.0)” template includes a main form for your application, 
called Form1.  Double-clicking “Form1.cs” in the Solution Explorer will open the form for 
editing. 

o Select the form by clicking on the picture of the phone in the main editor window 
o In the “Properties” panel at the bottom-right corner of the screen, find FormFactor and 

change the value to “Windows Mobile 5.0 Smartphone QVGA.”  This will make the 
display of the phone the same size as the actual Smartphones used in class. 

4. Drag some controls from the Toolbox (by default, hidden at the left side of the screen) onto the 
phone in the main editor window. 

5. Under the “Debug” menu, select “Start Debugging.”  This will bring up a dialog allowing you to 
select a deploy target – Pick “Windows Mobile 5.0 Smartphone Emulator QVGA” and click 
deploy.  This will launch the emulator and launch your application.  (Selecting “Debug”  “Stop 
Debugging” will quit your application but will leave the emulator running.) 

This process works fine for running applications from Visual Studio.  But it doesn’t allow you to 
browse the file system on the emulator, which is necessary if you want to run the program manually 



or to manipulate files that the application creates on the phone.  For that, you need to use 
ActiveSync. 

1. Under “Tools” select “Device Emulator Manager” which opens the Manager. Scroll down the 
list of Emulated devices until you see “Windows Mobile 5.0 Smartphone QVGA Emulator” and 
select it. Now under the “Actions” menu in the Emulator manager, select “Cradle”. 

2. Now open ActiveSync. Under “File”  “Connection Settings” check “Allow connections to one 
of the following” and select “DMA”. You only need to do this once. When you click “Connect”, 
ActiveSync should connect to the Emulator and give you some setup screens. After the first time, 
the connection should happen automatically when you “cradle” the Emulator via the Device 
Emulator manager.  

3. Now you can browse the file system on the Emulator by selecting “Explore” on ActiveSync (or 
selecting “Mobile Device” from My Computer).  By default, applications are deployed to 
“Program Files”. 

4. To launch your application from the Start Menu of the Emulated device, select the executable (in 
“Program Files\[app name]”), and right click and select “Create Shortcut”. Right click on the 
shortcut and do “Cut”. Then navigate the Emulator File system to “\Windows\Start Menu\Debug 
Apps” and right click and do “Paste”. Now go to the Emulator. Open its start menu and scroll 
down to “Debug apps” and open it. You should find the app link in there, and selecting it will 
run your program. 

Running the application on a Smartphone 

Like most commercial Smart Phones, the SP5s have strong security protection by default. All the code 
that runs on the phone must be signed. The Smartphone SDK includes test signature certificates and 
programs. Unfortunately, the default security on the phone is too high to run even these. The first step is 
therefore to change the local security policy. You need a (signed) version of the Registry Editor to do 
this.  

1. Configuring the Phone’s Security Policy  
WARNING: This requires a registry edit. We suggest this be done by a member of your group 
who has used a Windows registry editor before. If you’re unsure about this step, please bring the 
phone to us and we will make the edits.  

a. Copy the file regeditSTG.zip 
(http://inst.eecs.berkeley.edu/~cs160/sp06/readings/regeditSTG.zip) to your PC, and 
unzip it to produce regeditSTG.exe. Connect your Smartphone to the PC, and pair it with 
ActiveSync. Then click on “Explore” in ActiveSync to open the Smartphone’s file 
system. Browse to the \Program Files directory, and create a new folder called “Regedit”. 
Copy (drag and drop) the file regeditSTG.exe into this directory.  

b. You should then be able to browse to this directory from the phone itself. Click the start 
button on the phone, go down one screen to “File Manager”, and browse to \Program 
Files\Regedit. Click to start the registry editor. Once it starts, scroll to: 
HKEY_LOCAL_MACHINE\Security\Policies\Policies 
and then click on “Values”. You should see a list of Numerical key value names, starting 
with 00001001. 
Select 00001001 and change the “Value data” field to 1 (decimal). Click on Done. 



Exit the registry editor (red hangup button). This change allows the remote API (RAPI) 
tool to make further security changes. 

c. Now make sure that your device is connected to the PC with ActiveSync, and go to the 
Windows Mobile SDK directory on your PC (C:\Program Files\Windows CE 
Tools\wce500\Windows Mobile 5.0 Smartphone SDK\Tools) and run: RapiConfig.exe /p 
SdkCerts.xml which makes various configuration changes to allow execution of Visual 
Studio apps on the phone.  

d. At this point you will be able to compile code from Visual Studio and deploy and run it 
on the Device. If the code is unsigned, you will get a security prompt the first time you 
run each program. To avoid this, you can configure Visual Studio to sign your 
application.  

2. Configuring Visual Studio to sign your app 
a. In Visual Studio set “Target device” to “Windows Mobile 5.0 Smartphone Device”. 
b. From the “Project” menu, select “Properties”, then “Devices”.  Select “Sign the project 

output with this certificate”.  Then click on “Select Certificate Manage 
Certificats Import” to open the certificate import wizard. The certificate to use is 
located in the Windows Mobile SDK, and its default location is  
C:\Program Files\Windows CE Tools\wce500\Windows Mobile 5.0 Smartphone 
SDK\Tools\SDKSamplePrivDeveloper.pfx (copy and paste this into the “file name” 
field).  During certificate import, you may be prompted for a password, but you can leave 
it blank. Assuming this works, Visual Studio will sign your app each time you build it. 
You should do this for every project you plan to run on the phone. 

3. Building and Running 
a. From Visual Studio, make sure “Target Device” is set to “Windows Mobile 5.0 

Smartphone Device”, and build the app as with the Emulator. Use “Build Deploy [app 
name]” to transfer it to the phone. It should appear in a directory \Program Files\[app 
name] on the Smartphone. You can run it from there using File Manager from the phone, 
or you can create a shortcut as you did with the Emulator to be able to run it directly from 
the phone’s start menu.  You can also run (and Debug) it as before, by selecting “Start 
Debugging” from the “Debug” menu. 

Making a more complicated application 
The following will walk you through a slightly more complicated example making use of multiple forms 
and dialog boxes. 

1. Add a Label to Form1 with the text “This is a test form.  Insert some text below, and then select 
Continue.” (Change the text by editing the Text property in the property editor.) 

2. Add a TextBox to Form1, remove the default text (by changing the Text property), and change 
the Name property of the TextBox to “m_textBox”. 

3. Click on the menu area of Form1 (the bottom of the display, right above the left menu button).  
A “Type Here” prompt should appear, allowing you to type in “Continue”.  This creates a new 
MenuItem and automatically places it in the main menu of Form1. 



4. You should now have a display that looks something like the 
sample shown here.  However, the application doesn’t do 
anything yet… 

5. Visual Studio will help you automatically connect event 
handlers to user interface elements.  To connect one to the 
“Continue” menu item, simply double-click on it.  Doing so will 
generate the function menuItem1_Click in Form1.cs and will 
attach the appropriate event handler to the control.  (The event 
handling code is in the “Windows Form Designer generated 
code” section of Form1.cs, which is hidden by default.) 

a. Event handling code: this.menuItem1.Click += new 
System.EventHandler(this.menuItem1_Click); 

b. Callback function: private void 
menuItem1_Click(object sender, EventArgs e) 
   { } 

6. Now, whenever the user selects the “Continue” menu item, the 
function menuItem1_Click will be called automatically. 

7. Insert the following code into the body of the menuItem1_Click 
function: 
private void menuItem1_Click(object sender, 
EventArgs e) 

      { 
// Show a dialog asking the user if it's okay  
to continue 
DialogResult result = MessageBox.Show("You    
  entered: " +  
  m_textBox.Text + ". Do you want to continue?",     
  "Continue?", MessageBoxButtons.YesNo,  
  MessageBoxIcon.Question,  
  MessageBoxDefaultButton.Button1); 

             
            // Open up form2 if it is okay 
            if (result == DialogResult.Yes) 
            { 
                Form2 nextForm = new Form2(); 
                nextForm.Show(); 

       } 
} 
 
This code will show a dialog box asking the user if it’s okay to continue.  If the user selects 
“Yes”, it will open up a new instance of Form2. 

8. Now create a new Form class called Form2 (right-click on your application in the Solution 
Explorer, select “Add”, and select “Windows Form…”. 

a. Put anything you want in the body of the form 
b. Create a menu item with the text “Exit.” 
c. Attach a new event handler to the “Exit” menu item, and enter Application.Exit(); 

into the body of the function (which will cause your application to quit when it executes). 



Using the Experience Sampling toolkit 
If you have time, try out the experience sampling toolkit, which allows you to instrument your 
application with automated logging of program state, user response time, and responses to custom 
questions. 

• Sample code is available at 
http://inst.eecs.berkeley.edu/~cs160/sp06/section/ExperienceLogger.zip  

o Open the solution in Visual Studio and look at ESMTestApplication for basic 
functionality. 

• Compiled code is available at 
http://inst.eecs.berkeley.edu/~cs160/sp06/section/ExperienceLoggerDLLs.zip 

o Link to ExperienceLoggerCF1.0.dll in your application by right-clicking on “References” 
in the Solution Explorer, selecting “Add reference…” and browsing to find the 
downloaded Dll. 

Using OpenNETCF 
In building your applications, you may also want to use the OpentNETCF.org Smart Device Framework 
(v 1.4), which includes C# managed code accessors to advanced phone functionality (e.g. vibrating, 
SMS, etc.). 

• More information at http://www.opennetcf.org/ 
• Binary download at http://www.opennetcf.org/getfile.asp?file=SDF14Assemblies&dir=bin 
• Documentation at http://www.opennetcf.org/library/ 

 


