CS 161 Computer Security
Fall 2005 Joseph/ Tygar / Vazirani / Wagner HW 2

Solution

1. (4 pts.) Any questions
Any constructive responses is given full credit.

2. (20 pts.) PGP
If you emailed your TA with a correctly signed encrypted message you will receive full credit.

3. (10 pts.) One-time pad
(a) No, this scheme does not have the security guarantees of a one-time pad. Table 1 lists the

resulting encrypted messages using this scheme. We can see that some outcomes exclude certain
inputs. For example, given (M,K) = 11 an attacker knows that the sent message M is not 0.

(b) We wish to design a new encryption algorithm E*(-,-) that has the security guarantees of the
one-time pad. We require that given E*(M,K), an attacker should get no information about M.

This property is satisfied for any E*(M,K) that is uniform on {0, 1,2}. One such algorithm is as
follows:

E*(M,K) =M+K mod 3.
Table 2 confirms that each outcome is equally likely.

4. (10 pts.) An RSA reduction
We wish to factor N = pg. Since e =3 and d are inverses modulo ¢(N) = (p—1)(gq— 1), have that

3d=ed=1+k(p—1)(g—1)=1+Kk¢(N)
for some k € {1,2,...}. Also we have thatd < ¢(N), so k€ {1,2}. (In fact k = 2 always.)

Table 1: Encrypted messages using E

M | K | EMK)
00 (00| 00
00| 01| ol
00| 10| 10
01 |00| ol
01|01 | 00
01 |10] 11
10/00| 10
10 | 01 11
1010 00
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Table 2: Encrypted messages using E*

M | K | E*(M,K)
0000 00
00|01 | o1
00 | 10 10
01]00| o1
01 | 01 10
01| 10| 00
10 | 00 10
10|01 | 00
10|10] o1

We have a finite number of possible values of k, so we can check which K is correct as follows:
Fix a k. Given this guess at Kk, we can infer a presumed values for ¢ (N) via

3d—1

¢(N)k:T-

Also the true value for ¢ (N) satisfies ¢(N) = (p—1)(g—1) =pg—p—q+1=N-— % —-q+1;
rewriting this, we can solve for  via the quadratic equation, given the value of ¢(N). This gives a
way to test whether our guess ¢ (N)i was correct, since we can use our guess to solve for g and test
whether the resulting g is indeed a factor of N.

The running time is polynomial in the number of bits of N: we use O(1) operations on integers no
larger than N, which corresponds to O((IgN)?) bit operations.

An algorithm for general e is given in G. Miller, “Riemann’s hypothesis and tests for primality,”
Journal of Computer and System Sciences, 13(3):300-317, 1976. This algorithm is in time polynomial
to the number of bits in N.

5. (21 pts.) The definition of a secure block cipher

(a) Insecure
A distinguishing attack on the block cipher E is as follows:
Ask for the encryption of two messages M, M’; receive the ciphertexts C,C'. fM@&C =M ¢C/,
then guess that you are interacting with E; otherwise, you are definitely interacting with P. This
works because M & Ex (M) = K for all M, yet the corresponding equality occurs with extremely
low probability for P. The distinguishing advantage of this attack is 1 —1/(2'2% —1).

(b) Secure

A reduction proving the security of E goes as follows:

Suppose there is some successful distinguishing attack A that breaks E. Define the attack B by
Bf = AT)%1, In other words, B simulates the operation of A, except that when A hands message
M to its box, B queries its box with M, receives C, hands C & 1 back to A (as though it were the
response from A’s box), and continues to simulate A. I claim that B breaks AES. In particular,
BAESk() = AB« and BP() = AP'(), where P’(x) = P(x) @& 1. Now if P is a random permutation,
then so is P’. This means that B distinguishes AES from a random permutation, with advantage
AdvB = AdvA. In summary, if there is any attack that breaks E (distinguishes E from random
with advantage €), then there is an attack that breaks AES (distinguishes AES from random with
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the same advantage €£). Taking the contrapositive, we see that if AES is secure (there is no attack
that breaks AES), then E is secure (there is no attack that breaks E).

(c) Insecure
An attack on the block cipher E is as follows:
Ask for the encryption of message M, receiving C; if C = AESp(M), then guess that you are
interacting with E; otherwise, you are definitely interacting with P. This attack has advantage
1 —1/2'%8 at distinguishing E from P.

(d) Insecure
An attack on the block cipher E is as follows:
The attack is a combination from part (a) and (c). Ask for the encryption of two messages M, M’;
receive the ciphertexts C,C’. Decrypt C and C' under AES with key 0. If M@ AES; ' (C) =M’ @
AES, ! (C'), then guess that you are interacting with E; otherwise, you are definitely interacting
with P.

(e) Secure
Here is a sketch of a proof:
Since AES is secure, you cannot distinguish AESk, (AESk,(-)) from AESk, (P(:)). (One can
prove this by a reduction: if A distinguishes these two, then B, given by Bf = AAESK(T()) where k
is chosen randomly, distinguishes AES from P, which is impossible.) Also, since AES is secure,
you cannot distinguish AESk, (P(-)) from P'(P(-)), where P’ is a random permutation chosen
uniformly and independently at random from P. (Another reduction: Bf = Af(P()) ) But P'o P
is also a random permutation. Combining the above statements, we see that Ex(-) cannot be
distinguished from a random permutation.

(f) Insecure
An attack:
Let M = (M, MRg) be arbitrary. Choose M’ = (M, Mg), so that M and M’ have the same left
half. Ask for the encryption of M and M’, receiving C and C'. Check whether C and C’ agree
in their left half. If C_ = C[, guess that you are interacting with E; otherwise, you are definitely
interacting with P.

(g) Insecure
An attack:
Choose M arbitrarily. Ask for the encryption of M, receiving C. Ask for the encryption of C,
receiving C'. Now if C' = M, guess that you are interacting with E; otherwise, you are interacting
with P. This works since

Ex(Ex(M)) = AES, ' (AESk (AESK ' (AESKk (M) @ 1)) @ 1)
= AES ' ((AESk(M)@ 1) @ 1)
= AES,'(AESk(M))
=M
but P(P(M)) is rarely equal to M.

6. (35 pts.) Security of CBC encryption

(a) If the inputs to the cipher P are distinct, then the distribution on the ciphertext C = (Cy,...,Cj)
is as follows: it is uniformly distributed on the set of ciphertexts such that all the C;’s are distinct.
Thus the distribution of the cipher text C when box is type I is the same as when the box is type
IL, if P is invoked on distinct inputs.
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Since the distribution of the cipher text C is the same for both type I and type II box, the ad-
versary has no advantage in distinguishing between the encryption of M and the encryption of
M’. Formally, the distribution on the output of A*°*°f&Pel ig the same as the distribution on the
output of APxoftypell (since everything A sees has the same distribution regardless of the type
of the box), so Pr[APox oftvpel — type T) = Pr[APox of ypell — type 1], and thus AdvA = 0.

(b) Let Em denote the event that Dy, ...,Dn_; are all distinct. We wish to prove that Pr[Dm =
Di|[Em] <1/(2"—m).
Note that Dy = Ci—1 @ Bm = P(Dm-1) ® Bm. Therefore, Dy, = D;j holds if and only if P(Dmy—1) ®
Bm = D, or equivalently, if and only if P(Dm_1) = Dj @ By, This means our goal is to show that
Pr[P(Dm-1) = Di & Bm|Em] < 1/(2" —m).
Suppose Dy, ...,Dm-1 and P(Dy),...,P(Dm-2) have all been chosen. Then D;j & By, is just a
fixed bit string. Also (by assumption) Dy, is different from all of Dy,...,Dm_3. Thus the
distribution on P(Dp_1) is uniform on the set of all values other than P(Dy),...,P(Dmn-2). In
particular, the value that P(Dyy_) hits any fixed bit string in this case is < 1/(2" —m).

(c) We want to bound the probability that Dj = Dj for some i # j. Let E denote the event that all
Dj’s are distinct, so we are looking for an upper bound on Pr[—E]. Define Ay, as the event that
D = Dj for some i < m. By part (b),

m—1 m—1

Pr[Am|—(AjU---UAm-1)] < z Pr[Dm = Di|Em] < z 1/2"—=m)=m/(2" —m).
i=0 i=0
Now we are ready to calculate the desired bound:

PI‘[—|E] = PI‘[A] UAU.. .UAJ‘]
< Pr[Al] +PI‘[A2’—|A1] + - —i—PI‘[Aj‘—'(Al U--- UAj_l)]

(see above)

1 ji+1)
n_j " 2

(it 1
S\ 2 J2n-f
(d) First we answer the questions from the hint. Event E is as above—namely, when all the inputs to

cipher P are unique. By part (c), Pr[E] > 1 — (11") /(2" — j). Also Pr[AP*ofopel — type [|E] =
Pr[Aboxoftype Il — type J|E] (by part (a)).
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Now we can calculate the advantage of the adversary at breaking CBC-P:
AdvA = [Pr[AP*f5pel  ype 1] — pr{aPexofpell _ pype )|
= |Pr[-E] -Pr[AboxofPel — type [|—E] 4 Pr[E] - Pr[AP T WPl — type I|E]
— Pr[—E] - Pr[APX TP Il — yne [|E] — Pr[E] - Pr[AP* Of &P Il — type T|E]) |
= |Pr[-E] -Pr[Aboxofpel — tyne [|E] — Pr[—E] - Pr[AP* TPl — type T|—E]
+ Pr[E] - Pr[AP* ofoPel — ype T|E] — Pr[E] - Pr[AP* ofvPe Il — type 1E])|
= |Pr[~E]- Pr[A** TPl — type I|=E] — Pr[—E] - Pr[AP* T 0PIl — type I|-E]|
(the last two terms were equal, by part (a))
Pr[—E] - [Pr[A™* ofyPe T — type 1| <E] — Pr{APXOfPe Il — ype 1| —E]|

< Pr[-E] (since |p—q| < 1 whenever 0 < p,q < 1)
j+1 :
< 2<12 >/(2”—J>- (by part (d))

(e) Recall that box I computes the function (M,M’) — CBC-AESk (M), and box II computes (M, M’) —
CBC-AESk (M’). Our goal is to show that these two boxes are indistinguishable.

e Let box I’ represent the function (M,M’) — CBC-P(M). We will first show that box I is
indistinguishable from box I.
Proof: By a reduction. Suppose A is an attacker that distinguishes box I from box I'. We’ll
define an algorithm B that distinguishes a AESk(-) box from a P(-) box. Bf works by
simulating A and using its (B’s) box f to emulate CBC-f(-); this is possible, since CBC
only uses AES or P as subroutines. If A sends (M, M’) to its box, where M = (My,...,M;),
then B will pick a random IV Dy, compute Cy = f(Dy) and C; = f(Ci_; & M) for i =
1,...,]j, and return C = (Cy,...,Cj) to A. Finally, B outputs whatever A does. Note that
BAESK() = AboxT gpd BP() = APXI' Therefore AdvB = AdvA; but by assumption, we
know that AdvB < T/ 2!, In conclusion, there is no way to distinguish box I from box I’
with advantage greater T/ 2.

o Let box II' represent the function (M, M’) — CBC-P(M’). By a very similar argument, box
IT cannot be distinguished from box IT, except with advantage < T /2'.

* Finally, by part (e), box I’ cannot be distinguished from box II', except with advantage
<2(3Y)/@" ).

This means that box I cannot be distinguished from box II except with advantage < 2T/ 2+

203 /2"~ ).
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