Stages in E-commerce purchase

- Advertising
- Solicitation
- Negotiation
- Purchase
- Payment
- Delivery
- Ordering/support

Credit cards as an enabler

- Standard purchase model reveals credit information
- Overhead costs can be high for microtransactions
- Acquiring Bank vs. Consumer Bank
- Payment processors

Why is a credit card transaction 50¢?

Information goods

- Consider the purchase of an information good or service:
 - Library information
 - Search services
 - Software
 - Video clips
- These transactions may be large value or microtransactions
- In either case, atomicity is crucial
Payment methods: Atomicity

What is atomicity?

- I won’t try to give a formal definition
- 3 types of atomicity:
 - Money atomicity
 - All money transfers complete with non-ambiguous results
 - Money is neither destroyed nor created
 - Goods atomicity
 - One receives goods if and only if one pays
 - Example: Cash On Delivery parcels
 - Certified delivery
 - Both buyer and seller can prove the delivered content
 - If you get bogus goods, you can prove it

First Virtual

- User pays after receiving goods
- Money atomicity only
- Messages sent in clear
- Uses expensive credit card transactions

Netscape/SSL model

- Consumer sends card # direct to merchant
- Similar to today’s phone order
- Must trust merchant with card info
- Weak atomicity
- High transaction costs

Third party intermediary model (Cybercash)

- Protects consumer’s card info
- Use Internet for reaching Cybercash gateway to acquirers
- Adds to credit card card cost

Mastercard/Visa SET

- Protects consumer’s card info by cryptography
- Money-atomicity only
- Use net to reach acquirer
- Uses expensive credit card transactions (high commission)
Digicash

1. Consumer asks bank for anonymous digicash
2. Bank sends anonymous digicash bits to consumer
3. Consumer sends digicash to merchant in payment
4. Merchant checks that digicash has not been double spent
5. Bank verifies that digicash is valid

Problems
- No atomicity
- Anonymity restricted in US
- Interrupt transaction: ambiguous state
- Detecting double spending is expensive

NetBill goals

- Real service
- Highly atomic transactions
- Micro-transactions
- Full security and privacy

NetBill features

- Focus on info goods/services (journal articles)
- Microtransaction (10¢ purchase: 1¢ overhead)
- Variable pricing
- Fully integrated access control
- DES/RSA/DSA combo for best performance
- Electronic statements & account creation
- Certified delivery: proof of purchase/content

NetBill model

- An electronic credit card to enable network based commerce
- Provides billing services on behalf of network attached merchants.

NetBill protocol

(All messages are encrypted with shared key S)

1. Buyer requests price
2. Seller makes offer
3. Buyer accepts offer
4. Goods delivered encrypted with K
5. Buyer signs EPO (electronic purchase order)
 $<$price, crypto-checksum, timeout$>$
6. Seller countersigns EPO, and signs K
7. NetBill checks account, timeout; stores K & crypto-checksum; transfers price money; sends signed receipt including K
8. K received; goods decrypted

NetBill protocol - low level
Why atomic?

- **Money atomicity**
 - Accounts are held at a single server, and are modified with local atomic (ACID) transactions

- **Goods atomicity**
 - Customer receives decryption key for goods only if she pays
 - If customer pays, decryption key available from multiple sources (merchant and NetBill server)
 - Key can be delivered by alternative network (such as telephone) if necessary

- **Certified delivery**
 - If customer receives junk or bogus goods, can prove the contents to a judge
 - Crypto checksum of goods (signed by both customer and merchant) are stored at NetBill server
 - Signed copy of decryption key stored by all parties!

Role of Anonymity in EC

A puzzle

- Suppose Berkeley grads want to find their average salary
- But, of course, no participant wants to reveal his/her salary
- How can we compute the average without giving away information about any participant’s salary?

Later, I will give several solutions to this puzzle

Why study anonymity?

- **Privacy concerns**
 - individual
 - corporate
 - national
- **Technology for collecting private statistics**
- **Understand theoretical limits, countermeasures**
- **Understanding semi-anonymity**
 - Allows government search in exceptional circumstances
- **Insights**
 - e-commerce
 - distributed protocols
 - cryptography
 - survivability
Anonymous computation

- There is extensive work on anonymous and secret communication (cryptography)
- But what if we want to compute a function of the secure values?
- In puzzle, we want to add “encrypted” values
 - Examples:
 - Compute census statistics on usage or population
 - Make an anonymous purchase and then be able to prove that goods were delivered correctly
 - Anonymously auction goods — without revealing any bids (except the winning bid) or bidders

Is anonymous computation feasible?

- Good news:
 - In theory: any computation can be anonymized
- Bad news:
 - In general, constructions are complicated
 - Most constructions multiply number of messages by a factor of at least 1000 (and often, much higher, like 10^20)
 - Usually, simple IP location tracing (traffic analysis) reveals identity of parties
 - Computation requires complex crypto operations.
 - Running times for “simple” anonymous computations are usually measured in days or years.
- So researchers have relied on partial solutions
 - Mixes, pseudonyms, escrow

Mixes

- Use intermediate forwarding agents
- Examples: onion routing, crowds, anonymizer.com, etc.
- Idea simultaneously thought of by several researchers
- Problems:
 - Intermediary knows all
 - Subject to traffic analysis and statistical analysis
 - Can not link old messages to new messages

Pseudonymous identity

- Establish a consistent, but disguised identity
- Example: mail forwarders
- Can disguise basic facts about identity, but may be traceable from patterns of use
- Once identity is revealed, then all previous uses are traceable

Escrow

- Use pseudonym, but store real identity where law enforcement can find it.
 - Refinement: split identity into multiple parts
 - Store them in different locations
- Depends on procedural mechanisms (e.g. search warrants) for privacy
- Has drawbacks of pseudonym
- Government approach to cryptography

Unsatisfactory solutions to puzzle

- Mix approach:
 - Everyone sends salary anonymously to third parties who publish
- Escrow approach:
 - Everyone sends salary to trusted escrow agent
Fissionable data

- Idea:
 1. Fission data into different parts
 each part is random, but combination is not random
 2. Perform operations on parts
 3. Recombine data
- Mathematics is based on theory of finite fields
- Anonymous addition & multiplication are fast
- My examples focus on addition (easy to show)

Fissionable solution to puzzle

- Fix a modulo n
- Each person S (T, U, ...) picks $k-1$ random values $S_1, S_2, ..., S_{k-1}$
- Each person S picks a S_k such that
 $S_1 + S_2 + ... + S_{k-1} + S_k = [\text{Salary of } S] \pmod{n}$
- Each person S sends value S_k to referee i
 (communications should be over a secure channel)
- Referee i sums $S_i + T_i + U_i + ...$
- The referees publish their results and we take sum

Hierarchical approaches

- Because referees combine information locally, we can build hierarchies of referees
- This means that results can be combined at a communication point (such as an Internet router in the Active Network approach.)

Other forms

- We can also pick a random polynomial of degree q
 modulo p
 $f(x) = x^q + a_{q-1}x^{q-1} + ... + a_1x + a_0 \pmod{p}$
 (a_i are chosen randomly)
- Secret is $f(0) = a_0$
- Shares are $f(1), f(2), ...$
- Note: q shares determine $f(0)$ (Lagrange interpolation)
- We can add and multiply values
- Fault-tolerant: we can use more than q shares for redundancy
- Super-fast!

Auction types

- Auctions
 - Allocate scarce resources
 - Proposed to ration Internet bandwidth
- Three types of auctions
 - English auction (price goes up)
 - Advantages: encourages "honest" bids
 - Disadvantages: slow, not private
 - Sealed bid auction
 - Advantages: constant time
 - Disadvantages: does not encourage "honest" bids, auctioneer knows all
 - Dutch auction (price goes down)
 - Advantages: protects privacy
 - Disadvantages: slow, does not encourage "honest" bids
Vickrey auction

- Vickrey gave a way to combine best features of English auctions and sealed-bid auction
- Second-price auction
 - Highest bidder wins
 - Price is the value of the second highest bid
 - Example: Alice is highest bidder for $100; Bob is second highest bidder for $80; Alice wins the bid, but pays only $80

Anonymous auctions

- Goal: combine best features of all three protocols
- Should run in a single round
- Should reveal only second highest bid
- Highest bidder can claim prize for second highest price
- No other information is revealed

Anonymous bids

- Each of n auctioneers gets a temporary ID
- Bid is bit vector of potential bids
- Non-zero entry represents bid

| $5 | $10 | $15 | $20 | $25 | $30 | $35 | $40 | $45 | $50 | $55 | $60 | $65 | $70 | $75 | $80 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 65 | 125 | 34 | 1 | 90 | 93 | 32 | 402 | 323 | 206 | 214 | 159 | 0 | 0 | 0 |

- This bidder is willing to bid up to $65
- We fission each element in the bid vector to protect individual bidders

Looking for the 2nd highest bid

- Each bid vector is fissioned
- We partition bidders \(\log_2 n \) ways based on binary values of temporary IDs
 - low bit value 000/010/100/110 vs 001/011/110/111
 - 2nd bit value 000/001/100/101 vs 010/011/110/111
 - 3rd bit value 000/001/010/011 vs 100/101/110/111
- For each partition (element-by-element ops)
 - We anonymously add the vectors in blue and green partitions
 - We anonymously multiply blue sum with green sum
- We sum over all partitions
- The final vector has a non-zero entry exactly when at least 2 people bid that price

Anonymous auction

- The result is a bid vector; the highest non-zero entry is the second-highest bid
- All other entries are random, giving no information
- By using a technique called dynamic programming, we can dramatically reduce the number of operations
- Communications linear in the number of bids (as any auction must be!)

Anonymous auctions

- Goal: combine best features of all three protocols
 - Should run in a single round
 - Should reveal only winning bid
 - No other information is revealed

Example:
- In recent radio spectrum auctions, bidders signaled information by their bid
- A bid of 2 million dollars and 37 cents = "we want to bid unopposed on lot 37"