Review: Security Evaluation

- Identify the security goals
 - What are we trying to protect?
- Perform a threat assessment
 - What threats does the system need to protect against?
- Do a security analysis
 - Can we envision any feasible attack that would violate the security goals?
 - May be very technical
- Use same process for new system design
 - Easier to ensure security when you know the security goals and threats
 - Security analysis helps refine system design

Goals for Today

- War stories:
 - Telecom industry
 - Internet: Worms and Viruses
- Motivation: Crackers - from prestige to profit
- Lessons to be learned
- Communications Network Taxonomy
 - Packet Networks
- The Internet
 - Transport Layer: UDP/IP, TCP/IP
- Network Service Examples

Many networking slides courtesy of EE 122 (Stoica/Katz)

Phone System Hackers: Phreaks

- Earliest phone hackers?
 - 1870's teenagers
- 1920's (first automated switchboards)
- Mid-1950's deployment of automated direct-dial long distance switches
 - Dialed digits transferred using Single or Multi Frequency signaling

The Game is On

- Cat and mouse game between telcos and phreaks
- Telcos can't add filters to every phone switch
- Telcos monitor maintenance logs for "idle" trunks
- Phreaks switch to emulating coin drop in pay phones
- Telcos add auto-mute function
- Phreaks place operator assisted calls (disables mute)
- Telcos add tone filters to handset mics
- ...
The Phone System’s Fatal Flaw?

• It uses in-band signaling!
• Information channel used for both voice and signaling
• Knowing “secret” protocol = you control the system

What’s the solution?

Signaling System #6 and #7 (1978–)

• Transmits out-of-band signaling information
 - Completely separate packet data network used to setup, route, and supervise calls
 - Not completely deployed until 1990’s for some rural areas (equal access)
 - But, false sense of security...
 - Single company that owned entire network
 - No authentication
 - 1980’s deregulation – any telco can gain SS7 access and spoof any msgs (think CallerID).

Phreaking Summary

• In-band signaling enabled phreaks to compromise telephone system integrity
• Moving signaling out-of-band provides added security
 - But, what’s out-of-band for wireless?
 » Think, analog cellular...
 » Need strong crypto – authentication, encryption
• New economic models mean new threats
 - Not one big happy family, but bitter rivals

Internet Worms

• Self-replicating, self-propagating code and data
• Use network to find potential victims
• Typically exploit vulnerabilities in an application running on a machine or the machine’s operating system to gain a foothold
• Then search the network for new victims

Sapphire (AKA Slammer) Worm

• January 25, 2003
• Fastest computer worm in history
 - Used MS SQL Server buffer overflow vulnerability
 - Doubled in size every 8.5 seconds, 55M scans/sec
 - Infected >90% of vulnerable hosts within 10 mins
 - Infected at least 75,000 hosts
 - Caused network outages, canceled airline flights, elections problems, interrupted E911 service, and caused ATM failures

Before Sapphire

...
Worm Propagation Behavior

- More efficient scanning finds victims faster (~1 hr)
- Even faster propagation is possible if you cheat
 - Wasted effort scanning non-existent or non-vulnerable hosts
 - Warhol: seed worm with a "hit list" of vulnerable hosts (15 mins)

Internet Viruses

- Self-replicating code and data
- Typically requires human interaction before exploiting an application vulnerability
 - Running an e-mail attachment
 - Clicking on a link in an e-mail
 - Inserting/connecting "infected" media to a PC
- Then search for files to infect or sends out e-mail with an infected file

Administrivia

- Your 3 late days can only be used for projects
 - Not homeworks
- My office hours: Mon/Tue 3-4pm
 - No office hours next week
- Final exam conflict solution is in the works
 - More details on Monday

LoveLetter Virus (May 2000)

- E-mail message with VBScript (simplified Visual Basic)
- Relies on Windows Scripting Host
 - Enabled by default in Win98/2000
- User clicks on attachment \[\Rightarrow\] infected

What LoveLetter Does

- E-mails itself to everyone in Outlook address book
 - Also everyone in any IRC channels you visit using mIRC
- Replaces files with extensions with a copy of itself
 - vbs, vbe, js, jse, css, whs, act, hto, jpeg, jpg, mp3, mp2
- Searches all mapped and network drives
- Attempts to download a file called WIN-BUGSFIX.exe
 - Password cracking program
- Finds as many passwords as it can from your machine/network and e-mails them to the virus’ author in the Philippines
- Tries to set the user’s Internet Explorer start page to a Web site registered in Quezon, Philippines
LoveLetter’s Impact

- Approx 60 – 80% of US companies infected by the "ILOVEYOU" virus
- Several US gov. agencies and the Senate were hit
- > 100,000 servers in Europe
- Substantial lost data from replacement of files with virus code
 - Backups anyone?
- Could have been worse - not all viruses require opening of attachments...

Worm/Virus Summary

- Worms are a critical threat
 - More than 100 companies, including Financial Times, ABCNews and CNN, were hit by the Zotob Windows 2000 worm in August 2005
- Viruses are a critical threat
 - FBI survey of 269 companies in 2004 found that viruses caused ~$55 million in damages
 - DIY toolkits proliferate on Internet
- We’ll revisit worms and viruses in more detail later in the semester

Cracker Evolution

- Cracker = malicious hacker
- John Vranesevich’s taxonomy:
 - Communal hacker: prestige, like graffiti artist
 - Technological hacker: exploits defects to force advancements in sw/hw development
 - Political hacker: targets press/govn’t
 - Economical hacker: fraud for personal gain
 - Government hacker: terrorists?

Cracker Profile

- 1990’s: Internet spreads around the world
 - Crackers proliferate in Eastern Europe
- FBI Profiles (circa 1999)
 - Nerd, teen whiz kid, anti-social underachiever, social guru
- Later survey
 - Avg age 16 - 19, 90% male, 70% live in US
 - Spend avg 57 hrs/week online, 98% believe won’t be caught
 - Most motivated by prestige
 - Finding bugs, mass infections, ...

Changing Incentives (2001-)

- Cracking for profit, including organized crime
 - 50% of viruses still contain names of crackers or groups that created them
- Goal: create massive botnets
 - 10–50,000+ machines infected
 - Each machine sets up encrypted, authenticated connection to central point (IRC server) and waits for commands
- Rented for pennies per machine per hour for:
 - Overloading/attacking websites, pay-per-click scams, sending spam/phishing e-mail, or hosting phishing websites...

Example: Zotob Virus (August 2005)

- Financially-driven motive
- Process:
 - Infected machines and set IE security to low (enables pop-up website ads)
 - Revenue from ads that now appear
 - User may remove virus, but IE settings will likely remain set to low
 - Continued revenue from ads...
- Creators arrested August 25th
 - Farid Essabraw was arrested in Morocco and Atilla Ekici was detained by police in Turkey
- 16 others arrested in Turkey
 - Used variants of Zotob for credit card fraud
Computer Networks

• Need to understand computer networks to understand vulnerabilities and potential attacks
• What are the vulnerabilities of networks?
• How do crackers leverage networks to attack computers?
• How does the network "limit" crackers?
• How do crackers exploit network design and services?
• How can we harden networks, computers, and services?

What is a Communication Network?
(End-system Centric View)

• Network offers one basic service: move info
 - Bird, fire, runner, telegraph, phone, Internet, ...
• What distinguish different types of networks?
 - The services they provide, security, ...
• What distinguish the services?
 - Latency, Bandwidth, Loss rate, size, Service interface (how to invoke the service?)
 - Others
 - Reliability, unicast vs. multicast, real-time...
• What are the security issues?
 - Authentication, privacy, anonymity, integrity,

What is a Communication Network?
(Infrastructure Centric View)

• Communication medium: electron, photon
• Network components:
 - Links - carry bits from 1 place to 1 or more: fiber, copper, wireless,...
 - Interfaces - attach devices to links
 - Switches/routers - interconnect links: electronic/optic, crossbar/Banyan
 - Hosts - comm. endpoints: PCs, PDAs, cell phones, toasters
• Protocols - rules governing comm. between nodes
 - TCP/IP, ATM, MPLS, SONET, Ethernet, X.25
• Applications: Web browser, X Windows, FTP, ...
• Low-level security issues:
 - Authentication, privacy, integrity,

Taxonomy of Communication Networks

• Communication networks can be classified based on the way in which the nodes exchange information:

 Switched Communication Network
 Broadcast Communication Network
 Circuit-Switched Communication Network
 Packet-Switched Communication Network
 Datagram Network
 Virtual-Circuit Network
 Public Telephone Network

• Communication networks can be classified based on the way in which the nodes exchange information:

 Switched Communication Network
 Broadcast Communication Network
 Circuit-Switched Communication Network
 Packet-Circuit
 Datagram Network
 Virtual-Circuit Network
 IP networks

Each packet independently switched
Example: IP networks

All transmissions received by all nodes
Examples: usually in LANs (non-switched Ethernet, WIFI)

Info sent to subset of nodes
Examples: WANs (Telephony Network, Internet), switched Ethernet
The Internet

- Global scale, general purpose, public, heterogeneous-technologies, computer network
- Internet Protocol: Open standard
 - Internet Engineering Task Force (IETF)
 - Technical basis for other nets: Intranets
- History of the Internet
 - 68–70's: started as a research project, 56 kbps, initially 4 nodes (UCLA, UCSB, SRI, Utah)
 - 85–86: NSF builds NSFNET as backbone, links 6 Supercomputer centers, 1.5 Mbps, 10,000 nodes
 - 94: NSF backbone dismantled, multiple private backbones; Introduction of Commercial Internet
 - Today: backbones run at 10 Gbps, close to 320M computers in 150 countries

Regional Nets + Backbone

Backbones + NAPs + ISPs
Access Networks + Nodes In the Core

AT&T
Comcast
Cingular
ISPs
Sprint
AOL
LAN
LAN
LAN
NAP
dial-up
DSL
Always on
Cable
Head Ends
Cell
Cell
Cell
Satellite
Fixed Wireless

Internet Service

- "Best-Effort" service "between friends"
- No guarantees about packet delivery or authenticity
- Hosts must handle loss, delay, reordering, duplication
- Why not guarantee no loss and low delay?
- IP packets are addressed to a host (67.145.133.15)
- Network routes packets to address
- Transport layer sorts out pkts to applications

Internet Protocol Layers

NFS
WWW
E-mail
ssh
UDP
TCP
NFS
WWW
E-mail
ssh
UDP
TCP
Ethernet
ATM
WiFi
Cellular

Services Provided over the Internet

- Shared access to computing resources
 - telnet (1970's), ssh (1990's)
- Shared access to data/files
 - FTP, NFS, AFS (1980's), CIFS (late 90's)
- Communication medium over which people interact
 - email (1980's), on-line chat rooms, instant messaging (1990's)
 - audio, video, Voice-over-IP (1990's, early 00's)
 > replacing telephone network?
- Medium for information dissemination
 - USENET (1980's)
 - WWW (1990's)
 > replacing newspaper, magazine?
 - Audio, video (late 90's, early 00's)
 > replacing radio, TV?
 - File sharing (late 90's, early 00's)

Common Transport Protocols

- User Datagram Protocol (UDP)
 - Minimalist transport protocol
 - Same best-effort service model as IP
 - Messages up to 64KB
 - "Fire and Forget"
 - Provides multiplexing/demultiplexing to IP
 - Does not provide flow and congestion control
 - Application examples: video/audio streaming, VoIP
- Transmission Control Protocol (TCP)
 - Reliable, in-order, at most once delivery
 - Messages can be of arbitrary length
 - Provides multiplexing/demultiplexing to IP
 - Provides congestion control and avoidance
 - Application examples: file transfer, chat, P2P

TCP Timing Diagram

1 RTT delay – limits rate of new connections

SYN k
3-way handshake

SYN n; ACK k+1

DATA k+1; ACK n+1

Sender
Receiver
Open connect.
Example Svc: Domain Name Service (DNS)

- Humans/applications use machine names
 - e.g., www.cs.berkeley.edu
- Network (IP) uses IP addresses
 - e.g., 67.114.112.23
- DNS translates between the two
 - An overlay service in its own right
 - Global distribution of name-to-IP address mappings—a kind of content distribution system as well
 - Unsung hero of the Internet

Ex: File Transfer (FTP, SCP, etc.)

Get file from soup.cs.berkeley.edu

1. Get address for soup.cs.berkeley.edu

2. 67.132.22.5

3. DNS

Email

Email message exchange is similar to previous example, except

- Exchange is between mail servers
- DNS gives the name of mail server for a domain

Web

Get www.icir.org/file.html

1. Get address for www.icir.org

2. 67.132.22.5

3. DNS

Summary

- If you build it, someone will try to crack it
 - And probably will succeed...
- Changing incentives from prestige to profit increases the worm/virus threat
- Internet designed in a friendly era/environ
 - What’s wrong with: https://www.ebay.com/?
- Internet relies on “in-band” signaling
 - Makes authentication hard
- Using TCP limits connection rate
 - Slows worm/virus propagation
 - But UDP allows fast “fire and forget”...