Attacks on cryptography

• Direct attack
 – example: exhaustive search
• Known plaintext
• Chosen plaintext

• Usual assumptions: chosen plaintext attack; attacker knows E, D but not key
Notation

- Ciphertext = Encryption (Plaintext, encryption-Key)
 - sometimes we use "cleartext" instead of "plaintext"
- Key ∈ Keyspace
- Keysize = \(\log_2(|\text{Keyspace}|) \)
- \(c=E(m,k) \) (or \(c=E_k(m) \) or \(c=m_k \))
- Also Plaintext = Decryption(Ciphertext, decryption-Key)
- encryption-Key = decryption-Key (symmetric)
- encryption-Key ≠ decryption-Key (asymmetric)
- \(m=D(c,k)=E^{-1}(c,k) \) (or \(c=D_k(m) \))

RSA

- Idea:
 - Given \(e \), find \(d \), such that \(ed = K(p-1)(q-1)+1 \) for some \(K \)
 - Encryption: \(c = E(m) = m^e \mod pq \)
 - Decryption: \(D(c) = c^d \mod pq \)
 - So \(D(E(m)) = m^{ed} \mod pq = m^{K(p-1)(q-1)+1} \mod pq = m \)
- Issues:
 - Given \(e \), how can we find \(d \)?
 - Answer: use EGCD (extended greatest common divisor)
 - Euclidean algorithm
 - Given \(x, y \), EGCD finds \(Ax + By = \text{GCD} (x, y) \)
 - Let \(x=e, y=(p-1)(q-1) \), then \(Ae = (-B)(p-1)(q-1) + 1 \)
 - How can compute exponentiation modulo \(pq \) fast?
 - Repeated squaring mod \(pq \) – use binary form of number
RSA allows for “public keys”

• Encryption key public, decryption key private
 – Easy way to send secret messages
 – If we can guess plaintext, we can break (so we add random bits)
 – Decryption only by intended recipient
 – Perfect for distributing symmetric keys

• Encryption key private, decryption key public
 – Only I can send messages, anyone can verify (and read)
 – A type of “digital signature”
 – We will develop this idea in detail

Asymmetric crypto

• Advantages
 – Doesn’t require advance set up
 – Strongest forms are as hard as factoring
 – Perfect for solving key distribution problem
 – Good for building protocols

• Disadvantages
 – Slow, slow, slow (& takes space too)
 – Secrecy & source authentication takes two encryptions
 – Need to find a way to prove “public keys” are honest
 • Future lecture: public key hierarchy
How do we know a public key?

- One approach – the big directory (white pages)
 - Need to make secure big directory
 - Need to keep it updated

- Better approach: allow one party to attest to another
 - Public key infrastructure (PKI)
 - Public key certificate (PKC)
 - Certificate authority (CA)

A hypothetical public-key hierarchy

Doug Tygar’s public key is …
Love, Arnold Schwarzenegger
Digitally signed by AS
A hypothetical public-key hierarchy

Arnold Schwarzenegger’s public key is …
Love, George Bush Jr.
Digitally signed by W

Doug Tygar’s public key is …
Love, Arnold Schwarzenegger
Digitally signed by AS

George Bush Jr.’s public key is …
Love, Kofi Annan
Digitally signed by Kofi

Arnold Schwarzenegger’s public key is …
Love, George Bush Jr.
Digitally signed by W

Doug Tygar’s public key is …
Love, Arnold Schwarzenegger
Digitally signed by AS
Replay attacks

- Cryptosystems are vulnerable to replay attacks.
- Record message; playback later identically
- “Yes”/“No”

- Solution: use nonces (random bits; timestamp) etc.
- Message is <text, timestamp>

Keeping a secret

- Suppose we want to keep a secret among t people
- One way to do this is to set $\text{secret} = \sum \text{secret shares (mod n)}$
- Another way is exploit linear equations

 $$f(x) = x^q + a_{q-1}x^{q-1} + \cdots + a_1x + a_0 \pmod{p}$$

- Secret = a_0
- Distribute $f(1), f(2), \ldots, f(t)$
- Now a quorum q of those people can recover the secret
Factoring & RSA

- Factoring is easy → RSA is easy
- We have not proved that RSA is as hard as factoring.

- We need better cryptosystems
 - Secret sharing – allows party to store message secretly
 - Rabin signatures – equivalent to factoring

Chinese Remainder Theorem

- We can represent numbers mod pq
- Alternatively as a pair mod p and mod q

- $1 = <1 \text{ mod } 3, 1 \text{ mod } 5>$
- $7 = <1 \text{ mod } 3, 2 \text{ mod } 5>$
- $12 = <0 \text{ mod } 3, 2 \text{ mod } 5>$
Square roots

- This means that a square root mod \(pq \) has four roots.
- Suppose that \(r^2 = m \mod pq \)
- And \(r = <s \mod p, t \mod q> \)
- Then for square roots are:
 - \(<s \mod p, t \mod q> \)
 - \(<-s \mod p, t \mod q> \)
 - \(<s \mod p, -t \mod q> \)
 - \(<-s \mod p, -t \mod q> \)
- If we can find the square roots, then we can factor \(pq \)
- \(<s \mod p, t \mod q> + <-s \mod p, t \mod q> = <0 \mod p, 2t \mod q> = \text{multiple of } p \)

Rabin Signature algorithm

- If we can factor \(pq \), it is easy to take square roots
- This means square roots are a great signature
- Easy to verify (just take a square)
- If someone has a square root taking algorithm then he can factor easily.

- Square roots \(\leftrightarrow \) factoring