CS 161 – Signatures & Secret Sharing

18 September 2006

© 2006 Doug Tygar

•

CS 161- 18 September 2006

Attacks on cryptography

- Direct attack
 - example: exhaustive search
- Known plaintext
- · Chosen plaintext
- Usual assumptions: chosen plaintext attack; attacker knows E, D but not key

© 2006 Doug Tygar

2

Notation

- Ciphertext = Encryption (Plaintext, encryption-Key)
 - sometimes we use "cleartext" instead of "plaintext"
- Key ∈ Keyspace
- Keysize = log₂(|Keyspace|)
- c=E(m,k) (or $c=E_k(m)$ or $c=\{m\}_k$)
- Also Plaintext = Decryption(Ciphertext, decryption-Key)
- encyption-Key = decryption-Key (symmetric)
- encyption-Key ≠ decryption-Key (asymmetric)
- $m=D(c,k)=E^{-1}(c,k)$ (or $c=D_k(m)$)

© 2006 Doug Tygar

3

CS 161 - 18 September 2006

RSA

- Rivest, Shamir, Adleman (1978 published 1979)
- Idea:
 - Given e, find d, such that ed = K(p-1)(q-1)+1 for some K
 - Encryption: $c = E(m) = m^e \mod pq$
 - Decryption: $D(c) = c^d \mod pq$
 - So $D(E(m)) = m^{ed} \mod pq = m^{K(p-1)(q-1)+1} \mod pq = m$
- Issues:
 - Given e, how can we find d?
 - Answer: use EGCD (extended greatest common divisor)
 - Euclidean algorithm
 - Given x, y, EGCD finds Ax + By = GCD (x, y)
 - Let x=e, y=(p-1)(q-1), then Ae = (-B)(p-1)(q-1) + 1– How can compute exponentiation modulo pq fast?

 - Repeated squaring mod pq use binary form of number

© 2006 Doug Tygar

4

RSA allows for "public keys"

- · Encryption key public, decryption key private
 - Easy way to send secret messages
 - If we can guess plaintext, we can break (so we add random bits)
 - Decryption only by intended recipient
 - Perfect for distributing symmetric keys
- Encryption key private, decryption key public
 - Only I can send messages, anyone can verify (and read)
 - A type of "digital signature"
 - We will develop this idea in detail

© 2006 Doug Tygar

5

CS 161 - 18 September 2006

Asymmetric crypto

- Advantages
 - Doesn't require advance set up
 - Strongest forms are as hard as factoring
 - Perfect for solving key distribution problem
 - Good for building protocols
- Disadvantages
 - Slow, slow, slow (& takes space too)
 - Secrecy & source authentication takes two encryptions
 - Need to find a way to prove "public keys" are honest
 - · Future lecture: public key hierarchy

© 2006 Doug Tygar

6

How do we know a public key?

- One approach the big directory (white pages)
 - Need to make secure big directory
 - Need to keep it updated
- Better approach: allow one party to attest to another
 - Public key infrastructure (PKI)
 - Public key certificate (PKC)
 - Certificate authority (CA)

© 2006 Doug Tygar

7

CS 161 - 18 September 2006

A hypothetical public-key hierarchy

Doug Tygar's public key is ... Love, Arnold Schwarzenegger

Digitally signed by AS

© 2006 Doug Tygar

8

A hypothetical public-key hierarchy

Arnold Schwartzenegger's public key is ...
Love, George Bush Jr.

Digitally signed by W

Doug Tygar's public key is ... Love, Arnold Schwarzenegger

Digitally signed by AS

© 2006 Doug Tygar

9

CS 161 - 18 September 2006

A hypothetical public-key hierarchy

George Bush Jr.'s public key is ... Love, Kofi Annan

Digitally signed by Kofi

Arnold Schwartzenegger's public key is .
Love, George Bush Jr.

Digitally signed by W

Doug Tygar's public key is ... Love, Arnold Schwarzenegger

Digitally signed by AS

© 2006 Doug Tygar

10

Replay attacks

- · Cryptosystems are vulnerable to replay attacks.
- Record message; playback later identically
- "Yes"/"No"
- Solution: use nonces (random bits; timestamp) etc.
- Message is <text, timestamp>

© 2006 Doug Tygar

11

CS 161 - 18 September 2006

Keeping a secret

- Suppose we want to keep a secret among t people
- One way to do this is to set secret = \sum secret shares (mod n)
- · Another way is exploit linear equations

$$f(x) = x^q + a_{q-1}x^{q-1} + \dots + a_1x + a_0 \pmod{p}$$

- Secret = a_0
- Distribute f(1), f(2), ..., f(t)
- Now a quorum q of those people can recover the secret

© 2006 Doug Tygar

12

Factoring & RSA

- Factoring is easy \rightarrow RSA is easy
- We have not proved that RSA is as hard as factoring.
- · We need better cryptosystems
 - Secret sharing allows party to store message secretly
 - Rabin signatures equivalent to factoring

© 2006 Doug Tygar

13

CS 161 - 18 September 2006

Chinese Remainder Theorem

- · We can represent numbers mod pq
- Alternatively as a pair mod p and mod q
- 1 = <1 mod 3, 1 mod 5>
- $7 = <1 \mod 3, 2 \mod 5>$
- 12 = <0 mod 3, 2 mod 5>

© 2006 Doug Tygar

14

Square roots

- This means that a square root mod pq has four roots.
- Suppose that r² = m mod pq
- And r = <s mod p, t mod q>
- Then for square roots are:
- <s mod p, t mod q>
- <-s mod p, t mod q>
- <s mod p, -t mod q>
- <-s mod p, -t mod q>
- If we can find the square roots, then we can factor pq
- <s mod p, t mod q> + <-s mod p, t mod q> = <0 mod p, 2t mod q> = multiple of p

© 2006 Doug Tygar

15

CS 161 - 18 September 2006

Rabin Signature algorithm

- If we can factor pq, it is easy to take square roots
- This means square roots are a great signature
- Easy to verify (just take a square)
- If someone has a square root taking algorithm then he can factor easily.
- Square roots ↔ factoring

© 2006 Doug Tygar

16