CS 161 – Zero knowledge

20 September 2006

© 2006 Doug Tygar

•

CS 161-20 September 2006

Attacks on cryptography

- Direct attack
 - example: exhaustive search
- Known plaintext
- · Chosen plaintext
- Usual assumptions: chosen plaintext attack; attacker knows E, D but not key

© 2006 Doug Tygar

2

Notation

- Ciphertext = Encryption (Plaintext, encryption-Key)
 - sometimes we use "cleartext" instead of "plaintext"
- Key ∈ Keyspace
- Keysize = log₂(|Keyspace|)
- c=E(m,k) (or $c=E_k(m)$ or $c=\{m\}_k$)
- Also Plaintext = Decryption(Ciphertext, decryption-Key)
- encyption-Key = decryption-Key (symmetric)
- encyption-Key ≠ decryption-Key (asymmetric)
- $m=D(c,k)=E^{-1}(c,k)$ (or $c=D_k(m)$)

© 2006 Doug Tygar

3

CS 161 - 20 September 2006

RSA

- Rivest, Shamir, Adleman (1978 published 1979)
- Idea:
 - Given e, find d, such that ed = K(p-1)(q-1)+1 for some K
 - Encryption: $c = E(m) = m^e \mod pq$
 - Decryption: $D(c) = c^d \mod pq$
 - So $D(E(m)) = m^{ed} \mod pq = m^{K(p-1)(q-1)+1} \mod pq = m$
- Issues:
 - Given e, how can we find d?
 - Answer: use EGCD (extended greatest common divisor)
 - Euclidean algorithm
 - Given x, y, EGCD finds Ax + By = GCD (x, y)
 - Let x=e, y=(p-1)(q-1), then Ae = (-B)(p-1)(q-1) + 1
 - How can compute exponentiation modulo pq fast?
 - Repeated squaring mod pq use binary form of number

© 2006 Doug Tygar

4

Factoring & RSA

- Factoring is easy \rightarrow RSA is easy
- We have not proved that RSA is as hard as factoring.
- We need better cryptosystems
 - Secret sharing allows party to store message secretly
 - Rabin signatures equivalent to factoring

© 2006 Doug Tygar

5

CS 161 - 20 September 2006

Chinese Remainder Theorem

- · We can represent numbers mod pq
- Alternatively as a pair mod p and mod q
- 1 = <1 mod 3, 1 mod 5>
- $7 = <1 \mod 3, 2 \mod 5>$
- 12 = <0 mod 3, 2 mod 5>

© 2006 Doug Tygar

6

Square roots

- This means that a square root mod pq has four roots.
- Suppose that r² = m mod pq
- And r = <s mod p, t mod q>
- · Then for square roots are:
- <s mod p, t mod q>
- <-s mod p, t mod q>
- <s mod p, -t mod q>
- <-s mod p, -t mod q>
- If we can find the square roots, then we can factor pq
- <s mod p, t mod q> + <-s mod p, t mod q> = <0 mod p, 2t mod q> = multiple of p

© 2006 Doug Tygar

7

CS 161 - 20 September 2006

Rabin Signature algorithm

- If we can factor pq, it is easy to take square roots
- This means square roots are a great signature
- Easy to verify (just take a square)
- If someone has a square root taking algorithm then he can factor easily.
- Square roots ↔ factoring

© 2006 Doug Tygar

8

Leaky protocols

- · Many protocols leak information
- For example, consider the following authentication protocol:

 $A \rightarrow B$: Prove you are Bob, sign message M

 $B \rightarrow A$: Sign(M, B)

- Now Alice has some information she didn't have before
- She has Sign(M, B)
- · Perfect for what kind of attack?

© 2006 Doug Tygar

9

CS 161 - 20 September 2006

Zero-knowledge protocol

- · Idea: interactive proof
- At the end of the proof, A is convinced B knows a proof of fact F
- · But A has no information about that proof

© 2006 Doug Tygar

10

How to prove identity using zero-knowledge

- B publishes b² mod pq
- B \rightarrow A: $r^2 \mod pq$ (random r)
- · A flips coin
- A → B: coin flip
- · If heads
 - $-B \rightarrow A$: r mod pq
 - A verifies $(r \mod pq)^2 = r^2 \mod pq$
- If tails
 - $-B \rightarrow A$: rb mod pq
 - A verifies (rb mod pq) 2 = (r^2)(b^2) mod pq

© 2006 Doug Tygar

11

CS 161 - 20 September 2006

Comments

- 1. This is an easy-to-perform protocol
- 2. After each round, convinced with 50% probability

If B knows both rb & r (mod pq), he knows rb/r (mod pq)

Fake-B will be caught 50% of the time

3. A learns nothing – if she does, she could just generate pairs <r, r²>on her own. (Or, <rb, rb²>.)

© 2006 Doug Tygar

12