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Goals for Today
• Next 3 lectures are about software security

– Can have perfect design, specification, algos, 
but still have implementation vulnerabilities!

• Examine common implementation flaws
– Many security-critical apps use C, and C has 
peculiar pitfalls 

• Implementation flaws can occur with improper 
use of language, libraries, OS, or app logic

• Principles for building secure systems
– Trusted computing base (TCB)
– Three Cryptographic principles
– 13 other security principles
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Buffer Overrun Vulnerabilities
• Most common class of implementation flaw
• C is basically a portable assembler

– Programmer exposed to bare machine
– No bounds-checking for array or pointer 
accesses

• Buffer overrun (or buffer overflow) 
vulnerabilities
– Out-of-bounds memory accesses used to 
corrupt program’s intended behavior
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Simple Example
• char buf[80];
void vulnerable() {

gets(buf);
}

• gets() reads all input bytes available on 
stdin, and stores them into buf[]

• What if input has more than 80 bytes?
– gets() writes past end of buf, overwriting 
some other part of memory

– This is a bug!
• Results?

– Program crash/core-dump?
– Much worse consequences possible…
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Modified Example
• char buf[80];
int authenticated = 0; 
void vulnerable() {

gets(buf);
}

• A login routine sets authenticated flag only 
if user proves knowledge of password

• What’s the risk?
–authenticated stored immediately after buf
– Attacker “writes” data after end of buf

• Attacker supplies 81 bytes (81st set non-zero)
– Makes authenticated flag true!
– Attacker gains access: security breach!
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More Serious Exploit Example
• char buf[80];
int (*fnptr)();
...

• Function pointer fnptr invoked elsewhere
• What can attacker do?

– Can overwrite fnptr with any address, 
redirecting program execution! 

• Crafty attacker:
– Input contains malicious machine instructions, 
followed by pointer to overwrite fnptr

– When fnptr is next invoked, flow of control 
re-directed to malicious code

• This is a malicious code injection attack
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Buffer Overrun Exploits
• Demonstrate how adversaries might be able 
to use a buffer overrun bug to seize control
– This is very bad!

• Consider: web server receives requests from 
clients and processes them
– With a buffer overrun in the code, malicious 
client could seize control of server process

– If server is running as root, attacker gains 
root access and can leave a backdoor

» System has been “0wned”

• Buffer overrun vulnerabilities and malicious 
code injection attacks are primary/favorite 
method used by worm writers 
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Buffer Exploit History
• How likely are the conditions required to 
exploit buffer overruns?
– Actually fairly rare…

• But, first Internet worm (Morris worm) 
spread using several attacks
– One used buffer overrun to overwrite 
authenticated flag in in.fingerd (network 
finger daemon)

• Attackers have discovered much more 
effective methods of malicious code 
injection…
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C Program Memory Layout
• Text region (program’s executable code)
• Heap, (dynamically allocated data)

– Grows/shrinks as objects allocated/freed
• Stack (local variable storage)

– Grows/shrinks with function calls/returns

• Function call pushes new stack frame on stack
– Frame includes space for function’s local vars
– Intel (x86) machines stack grows “down”
– Stack pointer (SP) reg points to current frame
– Stack extends from SP to the end of memory

0xFF…F0x00…0

heap    … stacktext region
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C Program Execution
• Instruction pointer (IP) reg points to next 
machine instruction to execute

• Procedure call instruction:
– Pushes current IP onto stack (return addr)
– Jumps to beginning of function being called

• Compiler inserts prologue into each function
– Pushes current SP value of SP onto stack
– Allocates stack space for local variables by 
decrementing SP by appropriate amount

• Function return:
– Old SP and return address retrieved from 
stack, and stack frame popped from stack

– Execution continues from return address
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Stack Smashing Attack
• void vulnerable() {

char buf[80];
gets(buf);

}
• When vulnerable() is called, stack 
frame is pushed onto stack

• Given “too-long” input, saved SP and 
return addr will be overwritten

• This is the stack smashing attack!

…caller’s stack framebuf saved SP     ret addr
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Stack Smashing Attack
• First, attacker stashes malicious code 
sequence somewhere in program’s address 
space (use previous techniques)

• Next, attacker provides carefully-chosen 
88-byte sequence
– Last four bytes chosen to hold code’s 
address overwrite saved return address

• When vulnerable() returns, CPU loads 
attacker’s return addr – handing control 
over to attacker's malicious code

• Stack smashing exploit reference:
– “Smashing the Stack for Fun and Profit,”
written by Aleph One in November 1996
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Buffer Overrun Summary
• Techniques for when:

– Malicious code gets stored at unknown location
– Buffer stored on the heap instead of on stack
– Can only overflow buffer by one byte
– Characters written to buffer are limited (e.g., 
only uppercase characters)

– …
• Exploiting buffer overruns appears mysterious, 
complex, or incredibly hard to exploit 
– Reality – it is none of the above!

• Worms exploit these bugs all the time
– Code Red II compromised 250K machines by 
exploiting IIS buffer overrun
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Buffer Overrun Summary
• Historically, many security researchers 
have underestimated opportunities for 
obscure and sophisticated attacks
– Very easy mistake to make…

• Lesson learned:
– If your program has a buffer overrun bug, 
assume that the bug is exploitable and an 
attacker can take control of program

• Buffer overruns are bad stuff – you don’t 
want them in your programs!
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Format String Vulnerabilities
• void vulnerable() {

char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)

return;
printf(buf);
}

• Do you see the bug?
• Last line should be printf("%s", buf)

– If buf contains “%” chars, printf() will look 
for non-existent args, and may crash or core-
dump trying to chase missing pointers

• Reality is worse…
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Attack Examples
• Attacker can learn about function’s stack frame 
contents if they can see what’s printed
– Use string “%x:%x” to see the first two words of 
stack memory

• What does this string (“%x:%x:%s”) do?
– Prints first two words of stack memory
– Treats next stack memory word as memory addr
and prints everything until first '\0'

• Where does that last word of stack memory 
come from?
– Somewhere in printf()’s stack frame or, given 
enough %x specifiers to walk past end of 
printf()’s stack frame, comes from somewhere 
in vulnerable()'s stack frame
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A Further Refinement
• buf is stored in vulnerable()’s stack frame

– Attacker controls buf’s contents and, thus, 
part of vulnerable()’s stack frame 

– Where %s specifier gets its memory addr!
• Attacker stores addr in buf, then when %s
reads a word from stack to get an addr, it 
receives the addr they put there for it…
– Exploit: "\x04\x03\x02\x01:%x:%x:%x:%x:%s"
– Attacker arranges right number of %x’s, so 
addr is read from first word of buf (contains 
0x01020304) 

– Attacker can read any memory in victim’s 
address space – crypto keys, passwords…
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Yet More Troubles…
• Even worse attacks possible!

– If the victim has a format string bug
• Use obscure format specifier (%n) to 
write any value to any address in the 
victim’s memory

• Enables attackers to mount malicious code 
injection attacks
– Introduce code anywhere into victim’s 
memory

– Use format string bug to overwrite return 
address on stack (or a function pointer) 
with pointer to malicious code
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Format String Bug Summary
• Any program that contains a format string 
bug can be exploited by an attacker
– Gains control of victim’s program and all 
privileges it has on the target system

• Format string bug, like buffer overruns, 
are nasty business
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Administrivia
• Project #1 code and docs due today

– Don’t use up all your slip days

• Homework #2 due 10/27 (posted today)
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Another Vulnerability
• char buf[80]; 
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

• What's wrong with this code?
• Hint – memcpy() prototype:

– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

• Do you see it now?
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Implicit Casting Bug
• Attacker provides a negative value for len

–if won’t notice anything wrong
– Execute memcpy() with negative third arg
– Third arg is implicitly cast to an unsigned 
int, and becomes a very large positive int

–memcpy() copies huge amount of memory into 
buf, yielding a buffer overrun!

• A signed/unsigned or an implicit casting bug
– Very nasty – hard to spot

• C compiler doesn’t warn about type mismatch 
between signed int and unsigned int
– Silently inserts an implicit cast
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Another Example
• size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);
...

• What’s wrong with this code?
– No buffer overrun problems (5 spare bytes)
– No sign problems (all ints are unsigned) 

• But, len+5 can overflow if len is too large
– If len = 0xFFFFFFFF, then len+5 is 4
– Allocate 4-byte buffer then read a lot more 
than 4 bytes into it: classic buffer overrun!

• You have to know programming language’s 
semantics very well to avoid all the pitfalls
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Non-Language-Specific Vulnerabilities
• int openfile(char *path) {

struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only regular files allowed!");
return -1;

}
return open(path, O_RDONLY);

}

• Code to open only regular files
– Not symlink, directory, nor special device

• On Unix, uses stat() call to extract 
file’s meta-data 

• Then, uses open() call to open the file
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The Flaw?
• Code assumes FS is unchanged between stat()
and open() calls – Never assume anything…

• An attacker could change file referred to by 
path in between stat() and open()
– From regular file to another kind
– Bypasses the check in the code!
– If check was a security check, attacker can 
subvert system security

• Time-Of-Check To Time-Of-Use (TOCTTOU) 
vulnerability
– Meaning of path changed from time it is 
checked (stat()) and time it is used (open())
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TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls 
because system calls are not atomic

• But, TOCTTOU vulnerabilities can arise 
anywhere there is mutable state shared 
between two or more entities
– Example: multi-threaded Java servlets and 
applications are at risk for TOCTTOU
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Many More Vulnerabilities…
• We’ve only scratched the surface!

– These are the most prevalent examples

• If it makes you just a bit more cautious 
about how you write code, good!

• In future lectures, we’ll discuss how to 
prevent (or reduce the likelihood) of these 
kinds of flaws, and to improve the odds 
of surviving any flaws that do creep in
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Principles of Secure Software
• Let’s explore some principles for building 
secure systems
– Trusted Computing Base & several principles

• These principles are neither necessary nor 
sufficient to ensure a secure system design, 
but they are often very helpful

• Goal is to explore what you can do at design 
time to improve security
– How to choose an architecture that helps 
reduce likelihood of system flaws (or increases 
survival rate)

• Next lecture: what to do at implementation 
time
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The Trusted Computing Base (TCB)
• Trusted Component: 

– A system part we rely upon to operate 
correctly for system security

– (A part that can violate our security goals)
• Trustworthy components:

– System parts that we’re justified in 
trusting (assume correct operation)

• In Unix, the super-user (root) is trusted
– Hopefully they are also trustworthy…

• Trusted Computing Base:
– System portion(s) that must operate 
correctly for system security goals to be 
assured
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TCB Definition
• We rely on every component in TCB 
working correctly

• Anything outside isn’t relied upon
– Can’t defeat system’s security goals even 
if it misbehaves or is malicious

• TCB definition: 
– Must be large enough so that nothing 
outside the TCB can violate security



Page 6

Lec 13. 3110/16/06 Joseph CS161 ©UCB Fall 2006

TCB Example
• Security goal: only authorized users 
allowed to log into my system using SSH

• What is the TCB?
– TCB includes SSH daemon (it makes 
authentication and authorization decisions)

– If sshd has a bug (buf overrun) or was 
maliciously reprogrammed (backdoor), it 
can violate security goal by allowing 
unauthorized access

– TCB also includes OS (can tamper with 
sshd’s operation and address space)

– TCB also includes CPU (rely on it to 
execute sshd correctly)
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TCB Example (continued)
• What about a web browser application on 
the same machine? Is it in the TCB?

• Hopefully not! 
– OS is supposed to protect sshd from other 
unprivileged applications

• Another ex.: network perimeter firewall 
– Enforces security goal that only authorized 
connections are permitted into internal net

• In this example, the firewall is the TCB 
for this security goal
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TCB as Reference Monitor
• There’s always a mechanism responsible 
for enforcing an access control policy
– Recall firewall lecture: this mechanism is a 
Reference Monitor

• Reference monitor is the TCB for security 
goal of ensuring access control policy
– A reference monitor is just a TCB 
specialized for access control

• Recall: three guiding principles for 
reference monitor
– Unbypassable, Tamper-resistant, and 
Verifiable
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TCB as a Reference Monitor
• Unbypassable:

– No way to bypass the TCB and breach security
• Tamper-resistant:

– TCB protected from tampering by anyone else
» Other system parts (outside TCB) shouldn ’t be 
able to modify TCB’s code or state

– The integrity of the TCB must be maintained
• Verifiable:

– Should be possible to verify TCB correctness
» Means TCB should be as simple as possible 
(beyond the state of the art to verify complex 
subsystems)

BREAK
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Why Keep the TCB Simple and Small?
• Good practice!

– Less code you write, less chances to make 
mistakes or introduces implementation flaws

• Industry standard error rates are 1–5 
defects per thousand Lines of Code (kLoC)
– TCB containing 1 kLoC might have 1–5 defects
– 100 kLoC TCB might have 100–500 defects!
– (Windows XP is about 40,000 kLoC of TCB!!)

» Almost all of which is the TCB

• Lesson: 
– Shed code and design system so as much code 
can be moved outside the TCB as possible
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TCBs: What are They Good for?
• Is the TCB concept just an esoteric idea?

– No, it is a very powerful and pragmatic idea
– TCB allows primitive, yet effective modularity

• Separates system into two parts: security-
critical (TCB) and everything else

• Building secure and correct systems is hard!
– More pieces makes security assurance harder
– Only parts in TCB must be correct for system 
security –> focus efforts where they matter

– Making TCB small gives us better odds of 
ending up with a secure system
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Ex: Email Retention for National Archives
• National Archives chartered with saving a 
copy of every email ever sent by 
government officials
– Security Goal: Ensure that saved records 
cannot be deleted or destroyed

– Someone being investigated might try to 
destroy embarrassing or incriminating 
archived documents

• We need an “append-only” document 
storage system
– How can we do it?
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A Possible Approach
• Augment email program on every desktop 
computer to save a copy of all emails to a 
special directory on that computer
– What's the TCB for this approach?

» TCB includes every copy of email application on 
every government machine

» Also OS, all privileged SW, and sys admins

• That’s an awfully large TCB!
– Unlikely that everything in TCB works correctly

• Also, any sys admin can delete files from the 
special directory after the fact

• We’d better find a better solution!!
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Another Approach
• Set up a high-speed networked printer

– An email is “collected” when it is printed
– Printer room is locked to prevent tampering
– What’s the TCB in this system?

» TCB includes room’s physical security
» Also includes the printer

• Suppose we add a ratchet to paper spool so 
that it can only rotate forward 
– Don’t need to trust the rest of the printer

• Wow! 
– TCB is only this ratchet, and room’s physical 
security, nothing else!

• But, our approach uses a lot of paper!
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An All-Electronic Approach
• Networked PC running special server SW

– Accepts email msgs and adds them its local FS
– FS carefully implemented to provide write-once 
semantics: once a file is created, it can never 
be overwritten or deleted

– Packet filter blocks all non-email connections
• What’s in the TCB now?

– Server PC/app/OS/FS, privileged apps on PC, 
packet FW, PC’s sys admins, room’s physical 
security, …

• TCB is bigger than with a printer, but smaller 
than all machines approach’s TCB 

• I think you've earned your consulting fee
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TCB Principles Summary
• Know what is in the TCB

– Design your system so that the TCB is clearly 
identifiable

• Try to make the TCB as unbypassable, 
tamper-resistant, and verifiable as possible

• Keep It Simple, Stupid (KISS) 
– The simpler the TCB, the greater the chances 
you can get it right

• Decompose for security
– Choose a system decomposition/modularization 
based on simple/clear TCB

» Not just functionality or performance grounds
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Three Cryptographic Principles
• Three principles widely accepted in crypto 
community that seem useful in computer 
security
– Conservative Design
– Kerkhoff’s Principle
– Proactively Study Attacks
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1. Conservative Design
• Systems should be evaluated according to 
worst plausible security failure, under 
assumptions favorable to attacker
– Doug Gwyn came up with this formulation

• If you find such circumstance where the 
system can be rendered insecure, then 
you should seek a more secure system
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2. Kerkhoff’s Principle
• Cryptosystems should remain secure even 
when the attacker knows all internal 
details of the system

• The key should be the only thing that 
must be kept secret

• If your secrets are leaked, it is a lot 
easier to change the key than to change 
the algorithm
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3. Proactively Study Attacks
• We must devote considerable effort to 
trying to break our own systems
– How we can gain confidence in their security

• Other reasons:
– In security game, attacker gets last move
– Very costly if a security hole is discovered 
after wide system deployment

• Pays to try to identify attacks before bad 
guys find them
– Gives us lead time to close security holes 
before they are exploited in the wild
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Principles for Secure Systems
• General principles for secure system design

– Many drawn from a classic 1970s paper by Saltzer
and Schroeder

• 1. Security is Economics
– No system is 100% secure against all attacks

» Only need to resist a certain level of attack
» No point buying a $10K firewall to protect 
$1K worth of trade secrets

– Often helpful to quantify level of effort an 
attacker would expend to break the system.

– Adi Shamir once wrote, “There are no secure 
systems, only degrees of insecurity”

» A lot of the science of computer security 
comes in measuring the degree of insecurity
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Economics Analogy
• Safes come with a security level rating
• Consumer-grade safe:

– Rated to resist attack for up to 5 minutes 
by anyone without tools

• High-end safe might be rated TL-30
– Secure against burglar with safecracking 
tools and less than 30 minutes access 

– We can hire security guards with a less 
than 30 minute response time to any 
intrusion
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Corollary of This Principle
• Focus your energy on securing weakest links

– Security is like a chain: it is only as secure 
as the weakest link

– Attackers follow the path of least 
resistance, and will attack system at its 
weakest point

• No point in putting an expensive high-end 
deadbolt on a screen door
– Attacker isn’t going to bother trying to pick 
the lock when he can just rip out the screen 
and step through!
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2. Least Privilege
• Minimize how much privilege you give each 
program and system component
– Only give a program the minimum access 
privileges it legitimately needs to do its job

• Least privilege is a powerful approach
– Doesn’t reduce failure probability, but can 
reduce expected cost of failures

• Less privilege a program has, less harm it 
can do if it goes awry or runs amok
– Computer-age version of shipbuilder’s notion 
of “watertight compartments”:

» Even if one compartment is breached, we 
minimize damage to rest of system’s integrity
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Principle of Least Privilege Examples
• Can help reduce damage caused by buffer 
overruns or other program vulnerabilities
– Intruder gains all the program’s privileges
– Fewer privileges a program has, less harm 
done if it is compromised

• How is Unix in terms of least privilege?
– Answer: Pretty lousy!
– Programs gets all privileges of invoking users
– I edit a file and editor receives all my user 
account’s privileges (read, modify, delete)

• Strictly speaking editor only needs access 
to file being edited to get job done
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Principle of Least Privilege Examples
• How is Windows in terms of least privilege?

– Answer:  Just as lousy!
– Arguably worse, as many users run as 
Administrator and many Windows programs 
require Administrator access to run

• Every program receives total power over 
the whole computer!!

• Microsoft’s security team recognizes this 
risk
– Advice: Use limited privilege account and 
“Run As…”


