
Page 1

CS 194-1 (CS 161)
Computer Security

Lecture 13

Software security; Common
implementation flaws; Principles

October 16, 2006
Prof. Anthony D. Joseph

http://cs161.org/

Lec 13. 210/16/06 Joseph CS161 ©UCB Fall 2006

Goals for Today
• Next 3 lectures are about software security

– Can have perfect design, specification, algos,
but still have implementation vulnerabilities!

• Examine common implementation flaws
– Many security-critical apps use C, and C has
peculiar pitfalls

• Implementation flaws can occur with improper
use of language, libraries, OS, or app logic

• Principles for building secure systems
– Trusted computing base (TCB)
– Three Cryptographic principles
– 13 other security principles

Lec 13. 310/16/06 Joseph CS161 ©UCB Fall 2006

Buffer Overrun Vulnerabilities
• Most common class of implementation flaw
• C is basically a portable assembler

– Programmer exposed to bare machine
– No bounds-checking for array or pointer
accesses

• Buffer overrun (or buffer overflow)
vulnerabilities
– Out-of-bounds memory accesses used to
corrupt program’s intended behavior

Lec 13. 410/16/06 Joseph CS161 ©UCB Fall 2006

Simple Example
• char buf[80];
void vulnerable() {

gets(buf);
}

• gets() reads all input bytes available on
stdin, and stores them into buf[]

• What if input has more than 80 bytes?
– gets() writes past end of buf, overwriting
some other part of memory

– This is a bug!
• Results?

– Program crash/core-dump?
– Much worse consequences possible…

Lec 13. 510/16/06 Joseph CS161 ©UCB Fall 2006

Modified Example
• char buf[80];
int authenticated = 0;
void vulnerable() {

gets(buf);
}

• A login routine sets authenticated flag only
if user proves knowledge of password

• What’s the risk?
–authenticated stored immediately after buf
– Attacker “writes” data after end of buf

• Attacker supplies 81 bytes (81st set non-zero)
– Makes authenticated flag true!
– Attacker gains access: security breach!

Lec 13. 610/16/06 Joseph CS161 ©UCB Fall 2006

More Serious Exploit Example
• char buf[80];
int (*fnptr)();
...

• Function pointer fnptr invoked elsewhere
• What can attacker do?

– Can overwrite fnptr with any address,
redirecting program execution!

• Crafty attacker:
– Input contains malicious machine instructions,
followed by pointer to overwrite fnptr

– When fnptr is next invoked, flow of control
re-directed to malicious code

• This is a malicious code injection attack

Page 2

Lec 13. 710/16/06 Joseph CS161 ©UCB Fall 2006

Buffer Overrun Exploits
• Demonstrate how adversaries might be able
to use a buffer overrun bug to seize control
– This is very bad!

• Consider: web server receives requests from
clients and processes them
– With a buffer overrun in the code, malicious
client could seize control of server process

– If server is running as root, attacker gains
root access and can leave a backdoor

» System has been “0wned”

• Buffer overrun vulnerabilities and malicious
code injection attacks are primary/favorite
method used by worm writers

Lec 13. 810/16/06 Joseph CS161 ©UCB Fall 2006

Buffer Exploit History
• How likely are the conditions required to
exploit buffer overruns?
– Actually fairly rare…

• But, first Internet worm (Morris worm)
spread using several attacks
– One used buffer overrun to overwrite
authenticated flag in in.fingerd (network
finger daemon)

• Attackers have discovered much more
effective methods of malicious code
injection…

Lec 13. 910/16/06 Joseph CS161 ©UCB Fall 2006

C Program Memory Layout
• Text region (program’s executable code)
• Heap, (dynamically allocated data)

– Grows/shrinks as objects allocated/freed
• Stack (local variable storage)

– Grows/shrinks with function calls/returns

• Function call pushes new stack frame on stack
– Frame includes space for function’s local vars
– Intel (x86) machines stack grows “down”
– Stack pointer (SP) reg points to current frame
– Stack extends from SP to the end of memory

0xFF…F0x00…0

heap … stacktext region

Lec 13. 1010/16/06 Joseph CS161 ©UCB Fall 2006

C Program Execution
• Instruction pointer (IP) reg points to next
machine instruction to execute

• Procedure call instruction:
– Pushes current IP onto stack (return addr)
– Jumps to beginning of function being called

• Compiler inserts prologue into each function
– Pushes current SP value of SP onto stack
– Allocates stack space for local variables by
decrementing SP by appropriate amount

• Function return:
– Old SP and return address retrieved from
stack, and stack frame popped from stack

– Execution continues from return address

Lec 13. 1110/16/06 Joseph CS161 ©UCB Fall 2006

Stack Smashing Attack
• void vulnerable() {

char buf[80];
gets(buf);

}
• When vulnerable() is called, stack
frame is pushed onto stack

• Given “too-long” input, saved SP and
return addr will be overwritten

• This is the stack smashing attack!

…caller’s stack framebuf saved SP ret addr

Lec 13. 1210/16/06 Joseph CS161 ©UCB Fall 2006

Stack Smashing Attack
• First, attacker stashes malicious code
sequence somewhere in program’s address
space (use previous techniques)

• Next, attacker provides carefully-chosen
88-byte sequence
– Last four bytes chosen to hold code’s
address overwrite saved return address

• When vulnerable() returns, CPU loads
attacker’s return addr – handing control
over to attacker's malicious code

• Stack smashing exploit reference:
– “Smashing the Stack for Fun and Profit,”
written by Aleph One in November 1996

Page 3

Lec 13. 1310/16/06 Joseph CS161 ©UCB Fall 2006

Buffer Overrun Summary
• Techniques for when:

– Malicious code gets stored at unknown location
– Buffer stored on the heap instead of on stack
– Can only overflow buffer by one byte
– Characters written to buffer are limited (e.g.,
only uppercase characters)

– …
• Exploiting buffer overruns appears mysterious,
complex, or incredibly hard to exploit
– Reality – it is none of the above!

• Worms exploit these bugs all the time
– Code Red II compromised 250K machines by
exploiting IIS buffer overrun

Lec 13. 1410/16/06 Joseph CS161 ©UCB Fall 2006

Buffer Overrun Summary
• Historically, many security researchers
have underestimated opportunities for
obscure and sophisticated attacks
– Very easy mistake to make…

• Lesson learned:
– If your program has a buffer overrun bug,
assume that the bug is exploitable and an
attacker can take control of program

• Buffer overruns are bad stuff – you don’t
want them in your programs!

Lec 13. 1510/16/06 Joseph CS161 ©UCB Fall 2006

Format String Vulnerabilities
• void vulnerable() {

char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)

return;
printf(buf);
}

• Do you see the bug?
• Last line should be printf("%s", buf)

– If buf contains “%” chars, printf() will look
for non-existent args, and may crash or core-
dump trying to chase missing pointers

• Reality is worse…

Lec 13. 1610/16/06 Joseph CS161 ©UCB Fall 2006

Attack Examples
• Attacker can learn about function’s stack frame
contents if they can see what’s printed
– Use string “%x:%x” to see the first two words of
stack memory

• What does this string (“%x:%x:%s”) do?
– Prints first two words of stack memory
– Treats next stack memory word as memory addr
and prints everything until first '\0'

• Where does that last word of stack memory
come from?
– Somewhere in printf()’s stack frame or, given
enough %x specifiers to walk past end of
printf()’s stack frame, comes from somewhere
in vulnerable()'s stack frame

Lec 13. 1710/16/06 Joseph CS161 ©UCB Fall 2006

A Further Refinement
• buf is stored in vulnerable()’s stack frame

– Attacker controls buf’s contents and, thus,
part of vulnerable()’s stack frame

– Where %s specifier gets its memory addr!
• Attacker stores addr in buf, then when %s
reads a word from stack to get an addr, it
receives the addr they put there for it…
– Exploit: "\x04\x03\x02\x01:%x:%x:%x:%x:%s"
– Attacker arranges right number of %x’s, so
addr is read from first word of buf (contains
0x01020304)

– Attacker can read any memory in victim’s
address space – crypto keys, passwords…

Lec 13. 1810/16/06 Joseph CS161 ©UCB Fall 2006

Yet More Troubles…
• Even worse attacks possible!

– If the victim has a format string bug
• Use obscure format specifier (%n) to
write any value to any address in the
victim’s memory

• Enables attackers to mount malicious code
injection attacks
– Introduce code anywhere into victim’s
memory

– Use format string bug to overwrite return
address on stack (or a function pointer)
with pointer to malicious code

Page 4

Lec 13. 1910/16/06 Joseph CS161 ©UCB Fall 2006

Format String Bug Summary
• Any program that contains a format string
bug can be exploited by an attacker
– Gains control of victim’s program and all
privileges it has on the target system

• Format string bug, like buffer overruns,
are nasty business

Lec 13. 2010/16/06 Joseph CS161 ©UCB Fall 2006

Administrivia
• Project #1 code and docs due today

– Don’t use up all your slip days

• Homework #2 due 10/27 (posted today)

Lec 13. 2110/16/06 Joseph CS161 ©UCB Fall 2006

Another Vulnerability
• char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

• What's wrong with this code?
• Hint – memcpy() prototype:

– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

• Do you see it now?
Lec 13. 2210/16/06 Joseph CS161 ©UCB Fall 2006

Implicit Casting Bug
• Attacker provides a negative value for len

–if won’t notice anything wrong
– Execute memcpy() with negative third arg
– Third arg is implicitly cast to an unsigned
int, and becomes a very large positive int

–memcpy() copies huge amount of memory into
buf, yielding a buffer overrun!

• A signed/unsigned or an implicit casting bug
– Very nasty – hard to spot

• C compiler doesn’t warn about type mismatch
between signed int and unsigned int
– Silently inserts an implicit cast

Lec 13. 2310/16/06 Joseph CS161 ©UCB Fall 2006

Another Example
• size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);
...

• What’s wrong with this code?
– No buffer overrun problems (5 spare bytes)
– No sign problems (all ints are unsigned)

• But, len+5 can overflow if len is too large
– If len = 0xFFFFFFFF, then len+5 is 4
– Allocate 4-byte buffer then read a lot more
than 4 bytes into it: classic buffer overrun!

• You have to know programming language’s
semantics very well to avoid all the pitfalls

Lec 13. 2410/16/06 Joseph CS161 ©UCB Fall 2006

Non-Language-Specific Vulnerabilities
• int openfile(char *path) {

struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only regular files allowed!");
return -1;

}
return open(path, O_RDONLY);

}

• Code to open only regular files
– Not symlink, directory, nor special device

• On Unix, uses stat() call to extract
file’s meta-data

• Then, uses open() call to open the file

Page 5

Lec 13. 2510/16/06 Joseph CS161 ©UCB Fall 2006

The Flaw?
• Code assumes FS is unchanged between stat()
and open() calls – Never assume anything…

• An attacker could change file referred to by
path in between stat() and open()
– From regular file to another kind
– Bypasses the check in the code!
– If check was a security check, attacker can
subvert system security

• Time-Of-Check To Time-Of-Use (TOCTTOU)
vulnerability
– Meaning of path changed from time it is
checked (stat()) and time it is used (open())

Lec 13. 2610/16/06 Joseph CS161 ©UCB Fall 2006

TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls
because system calls are not atomic

• But, TOCTTOU vulnerabilities can arise
anywhere there is mutable state shared
between two or more entities
– Example: multi-threaded Java servlets and
applications are at risk for TOCTTOU

Lec 13. 2710/16/06 Joseph CS161 ©UCB Fall 2006

Many More Vulnerabilities…
• We’ve only scratched the surface!

– These are the most prevalent examples

• If it makes you just a bit more cautious
about how you write code, good!

• In future lectures, we’ll discuss how to
prevent (or reduce the likelihood) of these
kinds of flaws, and to improve the odds
of surviving any flaws that do creep in

Lec 13. 2810/16/06 Joseph CS161 ©UCB Fall 2006

Principles of Secure Software
• Let’s explore some principles for building
secure systems
– Trusted Computing Base & several principles

• These principles are neither necessary nor
sufficient to ensure a secure system design,
but they are often very helpful

• Goal is to explore what you can do at design
time to improve security
– How to choose an architecture that helps
reduce likelihood of system flaws (or increases
survival rate)

• Next lecture: what to do at implementation
time

Lec 13. 2910/16/06 Joseph CS161 ©UCB Fall 2006

The Trusted Computing Base (TCB)
• Trusted Component:

– A system part we rely upon to operate
correctly for system security

– (A part that can violate our security goals)
• Trustworthy components:

– System parts that we’re justified in
trusting (assume correct operation)

• In Unix, the super-user (root) is trusted
– Hopefully they are also trustworthy…

• Trusted Computing Base:
– System portion(s) that must operate
correctly for system security goals to be
assured

Lec 13. 3010/16/06 Joseph CS161 ©UCB Fall 2006

TCB Definition
• We rely on every component in TCB
working correctly

• Anything outside isn’t relied upon
– Can’t defeat system’s security goals even
if it misbehaves or is malicious

• TCB definition:
– Must be large enough so that nothing
outside the TCB can violate security

Page 6

Lec 13. 3110/16/06 Joseph CS161 ©UCB Fall 2006

TCB Example
• Security goal: only authorized users
allowed to log into my system using SSH

• What is the TCB?
– TCB includes SSH daemon (it makes
authentication and authorization decisions)

– If sshd has a bug (buf overrun) or was
maliciously reprogrammed (backdoor), it
can violate security goal by allowing
unauthorized access

– TCB also includes OS (can tamper with
sshd’s operation and address space)

– TCB also includes CPU (rely on it to
execute sshd correctly)

Lec 13. 3210/16/06 Joseph CS161 ©UCB Fall 2006

TCB Example (continued)
• What about a web browser application on
the same machine? Is it in the TCB?

• Hopefully not!
– OS is supposed to protect sshd from other
unprivileged applications

• Another ex.: network perimeter firewall
– Enforces security goal that only authorized
connections are permitted into internal net

• In this example, the firewall is the TCB
for this security goal

Lec 13. 3310/16/06 Joseph CS161 ©UCB Fall 2006

TCB as Reference Monitor
• There’s always a mechanism responsible
for enforcing an access control policy
– Recall firewall lecture: this mechanism is a
Reference Monitor

• Reference monitor is the TCB for security
goal of ensuring access control policy
– A reference monitor is just a TCB
specialized for access control

• Recall: three guiding principles for
reference monitor
– Unbypassable, Tamper-resistant, and
Verifiable

Lec 13. 3410/16/06 Joseph CS161 ©UCB Fall 2006

TCB as a Reference Monitor
• Unbypassable:

– No way to bypass the TCB and breach security
• Tamper-resistant:

– TCB protected from tampering by anyone else
» Other system parts (outside TCB) shouldn ’t be
able to modify TCB’s code or state

– The integrity of the TCB must be maintained
• Verifiable:

– Should be possible to verify TCB correctness
» Means TCB should be as simple as possible
(beyond the state of the art to verify complex
subsystems)

BREAK

Lec 13. 3610/16/06 Joseph CS161 ©UCB Fall 2006

Why Keep the TCB Simple and Small?
• Good practice!

– Less code you write, less chances to make
mistakes or introduces implementation flaws

• Industry standard error rates are 1–5
defects per thousand Lines of Code (kLoC)
– TCB containing 1 kLoC might have 1–5 defects
– 100 kLoC TCB might have 100–500 defects!
– (Windows XP is about 40,000 kLoC of TCB!!)

» Almost all of which is the TCB

• Lesson:
– Shed code and design system so as much code
can be moved outside the TCB as possible

Page 7

Lec 13. 3710/16/06 Joseph CS161 ©UCB Fall 2006

TCBs: What are They Good for?
• Is the TCB concept just an esoteric idea?

– No, it is a very powerful and pragmatic idea
– TCB allows primitive, yet effective modularity

• Separates system into two parts: security-
critical (TCB) and everything else

• Building secure and correct systems is hard!
– More pieces makes security assurance harder
– Only parts in TCB must be correct for system
security –> focus efforts where they matter

– Making TCB small gives us better odds of
ending up with a secure system

Lec 13. 3810/16/06 Joseph CS161 ©UCB Fall 2006

Ex: Email Retention for National Archives
• National Archives chartered with saving a
copy of every email ever sent by
government officials
– Security Goal: Ensure that saved records
cannot be deleted or destroyed

– Someone being investigated might try to
destroy embarrassing or incriminating
archived documents

• We need an “append-only” document
storage system
– How can we do it?

Lec 13. 3910/16/06 Joseph CS161 ©UCB Fall 2006

A Possible Approach
• Augment email program on every desktop
computer to save a copy of all emails to a
special directory on that computer
– What's the TCB for this approach?

» TCB includes every copy of email application on
every government machine

» Also OS, all privileged SW, and sys admins

• That’s an awfully large TCB!
– Unlikely that everything in TCB works correctly

• Also, any sys admin can delete files from the
special directory after the fact

• We’d better find a better solution!!
Lec 13. 4010/16/06 Joseph CS161 ©UCB Fall 2006

Another Approach
• Set up a high-speed networked printer

– An email is “collected” when it is printed
– Printer room is locked to prevent tampering
– What’s the TCB in this system?

» TCB includes room’s physical security
» Also includes the printer

• Suppose we add a ratchet to paper spool so
that it can only rotate forward
– Don’t need to trust the rest of the printer

• Wow!
– TCB is only this ratchet, and room’s physical
security, nothing else!

• But, our approach uses a lot of paper!

Lec 13. 4110/16/06 Joseph CS161 ©UCB Fall 2006

An All-Electronic Approach
• Networked PC running special server SW

– Accepts email msgs and adds them its local FS
– FS carefully implemented to provide write-once
semantics: once a file is created, it can never
be overwritten or deleted

– Packet filter blocks all non-email connections
• What’s in the TCB now?

– Server PC/app/OS/FS, privileged apps on PC,
packet FW, PC’s sys admins, room’s physical
security, …

• TCB is bigger than with a printer, but smaller
than all machines approach’s TCB

• I think you've earned your consulting fee
Lec 13. 4210/16/06 Joseph CS161 ©UCB Fall 2006

TCB Principles Summary
• Know what is in the TCB

– Design your system so that the TCB is clearly
identifiable

• Try to make the TCB as unbypassable,
tamper-resistant, and verifiable as possible

• Keep It Simple, Stupid (KISS)
– The simpler the TCB, the greater the chances
you can get it right

• Decompose for security
– Choose a system decomposition/modularization
based on simple/clear TCB

» Not just functionality or performance grounds

Page 8

Lec 13. 4310/16/06 Joseph CS161 ©UCB Fall 2006

Three Cryptographic Principles
• Three principles widely accepted in crypto
community that seem useful in computer
security
– Conservative Design
– Kerkhoff’s Principle
– Proactively Study Attacks

Lec 13. 4410/16/06 Joseph CS161 ©UCB Fall 2006

1. Conservative Design
• Systems should be evaluated according to
worst plausible security failure, under
assumptions favorable to attacker
– Doug Gwyn came up with this formulation

• If you find such circumstance where the
system can be rendered insecure, then
you should seek a more secure system

Lec 13. 4510/16/06 Joseph CS161 ©UCB Fall 2006

2. Kerkhoff’s Principle
• Cryptosystems should remain secure even
when the attacker knows all internal
details of the system

• The key should be the only thing that
must be kept secret

• If your secrets are leaked, it is a lot
easier to change the key than to change
the algorithm

Lec 13. 4610/16/06 Joseph CS161 ©UCB Fall 2006

3. Proactively Study Attacks
• We must devote considerable effort to
trying to break our own systems
– How we can gain confidence in their security

• Other reasons:
– In security game, attacker gets last move
– Very costly if a security hole is discovered
after wide system deployment

• Pays to try to identify attacks before bad
guys find them
– Gives us lead time to close security holes
before they are exploited in the wild

Lec 13. 4710/16/06 Joseph CS161 ©UCB Fall 2006

Principles for Secure Systems
• General principles for secure system design

– Many drawn from a classic 1970s paper by Saltzer
and Schroeder

• 1. Security is Economics
– No system is 100% secure against all attacks

» Only need to resist a certain level of attack
» No point buying a $10K firewall to protect
$1K worth of trade secrets

– Often helpful to quantify level of effort an
attacker would expend to break the system.

– Adi Shamir once wrote, “There are no secure
systems, only degrees of insecurity”

» A lot of the science of computer security
comes in measuring the degree of insecurity

Lec 13. 4810/16/06 Joseph CS161 ©UCB Fall 2006

Economics Analogy
• Safes come with a security level rating
• Consumer-grade safe:

– Rated to resist attack for up to 5 minutes
by anyone without tools

• High-end safe might be rated TL-30
– Secure against burglar with safecracking
tools and less than 30 minutes access

– We can hire security guards with a less
than 30 minute response time to any
intrusion

Page 9

Lec 13. 4910/16/06 Joseph CS161 ©UCB Fall 2006

Corollary of This Principle
• Focus your energy on securing weakest links

– Security is like a chain: it is only as secure
as the weakest link

– Attackers follow the path of least
resistance, and will attack system at its
weakest point

• No point in putting an expensive high-end
deadbolt on a screen door
– Attacker isn’t going to bother trying to pick
the lock when he can just rip out the screen
and step through!

Lec 13. 5010/16/06 Joseph CS161 ©UCB Fall 2006

2. Least Privilege
• Minimize how much privilege you give each
program and system component
– Only give a program the minimum access
privileges it legitimately needs to do its job

• Least privilege is a powerful approach
– Doesn’t reduce failure probability, but can
reduce expected cost of failures

• Less privilege a program has, less harm it
can do if it goes awry or runs amok
– Computer-age version of shipbuilder’s notion
of “watertight compartments”:

» Even if one compartment is breached, we
minimize damage to rest of system’s integrity

Lec 13. 5110/16/06 Joseph CS161 ©UCB Fall 2006

Principle of Least Privilege Examples
• Can help reduce damage caused by buffer
overruns or other program vulnerabilities
– Intruder gains all the program’s privileges
– Fewer privileges a program has, less harm
done if it is compromised

• How is Unix in terms of least privilege?
– Answer: Pretty lousy!
– Programs gets all privileges of invoking users
– I edit a file and editor receives all my user
account’s privileges (read, modify, delete)

• Strictly speaking editor only needs access
to file being edited to get job done

Lec 13. 5210/16/06 Joseph CS161 ©UCB Fall 2006

Principle of Least Privilege Examples
• How is Windows in terms of least privilege?

– Answer: Just as lousy!
– Arguably worse, as many users run as
Administrator and many Windows programs
require Administrator access to run

• Every program receives total power over
the whole computer!!

• Microsoft’s security team recognizes this
risk
– Advice: Use limited privilege account and
“Run As…”

