CS 194-1 (CS 161)
Computer Security

Lecture 13

Software security; Common
implementation flaws; Principles

October 16, 2006
Prof. Anthony D. Joseph
http://cs161.org/

Goals for Today

e Next 3 lectures are about software security
- Can have perfect design, specification, algos,
but still have implementation vulnerabilities!
e Examine common implementation flaws
- Many security-critical apps use C, and C has
peculiar pitfalls
* Implementation flaws can occur with improper
use of language, libraries, OS, or app logic
« Principles for building secure systems
- Trusted computing base (TCB)
- Three Cryptographic principles
- 13 other security principles

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.2

Buffer Overrun Vulnerabilities

* Most common class of implementation flaw
* C is basically a portable assembler
- Programmer exposed to bare machine
- No bounds-checking for array or pointer
accesses
« Buffer overrun (or buffer overflow)
vulnerabilities

- Out-of-bounds memory accesses used to
corrupt program’s intended behavior

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.3

Simple Example

e char buf[80];
voi d vul nerabl e() {
get s(buf);

e gets() reads all input bytes available on
st di n, and stores them into buf[]

e What if input has more than 80 bytes?

-gets() writes past end of buf, overwriting
some other part of memory

- This is a bug!
* Results?
- Program crash/core-dump?
- Much worse consequences possible...

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.4

Modified Example

* char buf[80];
int authenticated = 0;
voi d vul nerabl e() {
gets(buf);

* A | ogi n routine sets aut henti cat ed flag only
if user proves knowledge of password

e What's the risk?
—aut henti cat ed stored immediately after buf
- Attacker “writes” data after end of buf
* Attacker supplies 81 bytes (81st set non-zero)
- Makes aut hent i cat ed flag true!
- Attacker gains access: security breach!

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.5

More Serious Exploit Example

e char buf[80];
int (*fnptr)();

* Function pointer f nptr invoked elsewhere
* What can attacker do?

- Can overwrite f nptr with any address,
redirecting program execution!

« Crafty attacker:

- Input contains malicious machine instructions,
followed by pointer to overwrite f nptr

-When f nptr is next invoked, flow of control
re-directed to malicious code
e This is a malicious code injection attack

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.6

Page 1

Buffer Overrun Exploits

« Demonstrate how adversaries might be able
to use a buffer overrun bug to seize control

- This is very bad!
« Consider: web server receives requests from
clients and processes them

- With a buffer overrun in the code, malicious
client could seize control of server process
- If server is running as root, attacker gains
root access and can leave a backdoor
» System has been “Owned”

» Buffer overrun vulnerabilities and malicious
code injection attacks are primary/favorite
method used by worm writers

10/16/06 Joseph CS161 ©UCB Fall 2006

Lec 13.7

Buffer Exploit History

* How likely are the conditions required to
exploit buffer overruns?

- Actually fairly rare...

e But, first Internet worm (Morris worm)
spread using several attacks
- One used buffer overrun to overwrite
authenticated flag in i n. fi ngerd (network
finger daemon)

e Attackers have discovered much more
effective methods of malicious code
injection...

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.8

C Program Memory Layout
e Text region (program’s executable code)
e Heap, (dynamically allocated data)
- Grows/shrinks as objects allocated/freed
« Stack (local variable storage)

- Grows/shrinks with function calls/returns
stack |

| text region | heap

0x00..0 OxFF..F
¢ Function call pushes new stack frame on stack
- Frame includes space for function's local vars
- Intel (x86) machines stack grows “down”
- Stack pointer (SP) reg points to current frame
- Stack extends from SP to the end of memory

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.9

C Program Execution
« Instruction pointer (IP) reg points to next
machine instruction to execute
* Procedure call instruction:
- Pushes current IP onto stack (return addr)
-Jumps to beginning of function being called
» Compiler inserts prologue into each function
- Pushes current SP value of SP onto stack

- Allocates stack space for local variables by
decrementing SP by appropriate amount
e Function return:

-0OIld SP and return address retrieved from
stack, and stack frame popped from stack

- Execution continues from return address

10/16/06 Joseph CS161 ©UCB Fall 2006

Lec 13.10

Stack Smashing Attack
e voi d vul nerabl e() {
char buf[80];
get s(buf);

e When vul ner abl e() is called, stack
frame is pushed onto stack

[buf saved SP ret addr |caller’s stack frame |-

» Given “too-long” input, saved SP and
return addr will be overwritten

e This is the stack smashing attack!

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.11

Stack Smashing Attack

« First, attacker stashes malicious code
sequence somewhere in program’s address
space (use previous techniques)

* Next, attacker provides carefully-chosen
88-byte sequence

- Last four bytes chosen to hold code’s
address overwrite saved return address

* When vul nerabl e() returns, CPU loads

attacker’s return addr - handing control
over to attacker's malicious code

« Stack smashing exploit reference:

-“Smashing the Stack for Fun and Profit,”
written by Aleph One in November 1996

Joseph CS161 @UCB Fall 2006

10/16/06 Lec 13.12

Page 2

Buffer Overrun Summary
« Techniques for when:
- Malicious code gets stored at unknown location
- Buffer stored on the heap instead of on stack
- Can only overflow buffer by one byte

- Characters written to buffer are limited (e.g.,
only uppercase characters)

« Exploiting buffer overruns appears mysterious,
complex, or incredibly hard to exploit

- Reality - it is none of the above!
* Worms exploit these bugs all the time

- Code Red Il compromised 250K machines by
exploiting 11S buffer overrun
10/16/06

Joseph CS161 ©UCB Fall 2006 Lec 13.13

Buffer Overrun Summary

« Historically, many security researchers
have underestimated opportunities for
obscure and sophisticated attacks

-Very easy mistake to make...
e Lesson learned:

- If your program has a buffer overrun bug,
assume that the bug is exploitable and an
attacker can take control of program

e Buffer overruns are bad stuff - you don't
want them in your programs!

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.14

Format String Vulnerabilities

« void vul nerable() {
char buf[80];

if (fgets(buf, sizeof buf, stdin) == NULL)
return;
printf(buf);
}
« Do you see the bug?
e Last line should be printf("%", buf)

- IT buf contains “9% chars, printf () will look
for non-existent args, and may crash or core-
dump trying to chase missing pointers

* Reality is worse...
10/16/06

Joseph CS161 ©UCB Fall 2006 Lec 13.15

Attack Examples
* Attacker can learn about function’s stack frame
contents if they can see what’s printed

- Use string “%: % ” to see the first two words of
stack memory

* What does this string (“%: %: %”) do?

- Prints first two words of stack memory

- Treats next stack memory word as memory addr
and prints everything until first '\ 0’

* Where does that last word of stack memory
come from?

- Somewhere in printf()’s stack frame or, given
enough % specifiers to walk past end of
printf()’s stack frame, comes from somewhere
in vul nerabl e() "s stack frame

10/16/06 Joseph CS161 ©UCB Fall 2006

Lec 13.16

A Further Refinement

» buf is stored in vulnerable()’s stack frame

- Attacker controls buf’s contents and, thus,
part of vul nerabl e()’s stack frame
-Where % specifier gets its memory addr!

e Attacker stores addr in buf , then when %s
reads a word from stack to get an addr, it
receives the addr they put there for it..

- Exploit: "\ x04\ x03\ x02\ x01: %x: ¥%: %: %x: 98"
- Attacker arranges right number of %’s, so

addr is read from first word of buf (contains
0x01020304)

- Attacker can read any memory in victim’s
address space - crypto keys, passwords...

10/16/06

Joseph CS161 ©UCB Fall 2006 Lec 13.17

Yet More Troubles...

* Even worse attacks possible!
- If the victim has a format string bug

* Use obscure format specifier (%) to
write any value to any address in the
victim’s memory

e Enables attackers to mount malicious code
injection attacks

- Introduce code anywhere into victim’s
memory

- Use format string bug to overwrite return
address on stack (or a function pointer)
with pointer to malicious code

10/16/06

Joseph CS161 @UCB Fall 2006 Lec 13.18

Page 3

Format String Bug Summary

« Any program that contains a format string
bug can be exploited by an attacker

- Gains control of victim’'s program and all
privileges it has on the target system

* Format string bug, like buffer overruns,
are nasty business

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.19

Administrivia

e Project #1 code and docs due today
- Don't use up all your slip days

e Homework #2 due 10/27 (posted today)

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.20

Another Vulnerability

« char buf[80];
void vul nerable() {
int len = read_int_fromnetwork();
char *p = read_string_fromnetwork();
if (len > sizeof buf) {
error("length too |arge,
return;

nice try!");

}
mencpy(buf, p, len);

}
e What"s wrong with this code?
e Hint - nentpy() prototype:

—void *nencpy(void *dest, const void *src,
e Definition of size_t: typedef unsigned int size_t;

* Do you see it now?

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.21

size_t n);

Implicit Casting Bug

« Attacker provides a negative value for | en
—i f won't notice anything wrong
- Execute mentpy() with negative third arg

- Third arg is implicitly cast to an unsi gned
i nt, and becomes a very large positive int

—nencpy() copies huge amount of memory into
buf , yielding a buffer overrun!
« A signed/unsigned or an implicit casting bug
-Very nasty - hard to spot
* C compiler doesn’t warn about type mismatch
between si gned i nt and unsi gned i nt
- Silently inserts an implicit cast

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.22

Another Example
read_i nt _from network();

e size_t len =
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

* What's wrong with this code?
- No buffer overrun problems (5 spare bytes)
- No sign problems (all ints are unsigned)

e But, | en+5 can overflow if | en is too large
- I1fl en = OxFFFFFFFF, then | en+5 is 4

- Allocate 4-byte buffer then read a lot more
than 4 bytes into it: classic buffer overrun!

* You have to know programming language’s
semantics very well to avoid all the pitfalls

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.23

Non-Language -Specific Vulnerabilities

* int openfile(char *path) {
struct stat s;
if (stat(path,

return -1;
if (!S_ISRREEs.st_node)) {

error("only regular files allowed! ");

return -1;

&) < 0)

return open(path, O RDONLY);

« Code to open only regular files
- Not symlink, directory, nor special device

* On Unix, uses stat () call to extract
file's meta-data

e Then, uses open() call to open the file

10/16/06 Joseph CS161 @UCB Fall 2006 Lec 13.24

Page 4

The Flaw?

« Code assumes FS is unchanged between st at ()
and open() calls - Never assume anything...

« An attacker could change file referred to by
path in between st at () and open()
- From regular file to another kind
- Bypasses the check in the code!

- If check was a security check, attacker can
subvert system security
e Time-Of-Check To Time-Of-Use (TOCTTOU)
vulnerability

- Meaning of pat h changed from time it is
checked (stat ()) and time it is used (open())

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.25

TOCTTOU Vulnerability

e In Unix, often occurs with filesystem calls
because system calls are not atomic

e But, TOCTTOU vulnerabilities can arise
anywhere there is mutable state shared
between two or more entities

- Example: multi-threaded Java servlets and
applications are at risk for TOCTTOU

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.26

Many More Vulnerabilities...

* We've only scratched the surface!
- These are the most prevalent examples

* If it makes you just a bit more cautious
about how you write code, good!

e In future lectures, we'll discuss how to
prevent (or reduce the likelihood) of these
kinds of flaws, and to improve the odds
of surviving any flaws that do creep in

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.27

Principles of Secure Software

 Let’s explore some principles for building
secure systems

- Trusted Computing Base & several principles

e These principles are neither necessary nor
sufficient to ensure a secure system design,
but they are often very helpful

e Goal is to explore what you can do at design
time to improve security

- How to choose an architecture that helps
reduce likelihood of system flaws (or increases
survival rate)

¢ Next lecture: what to do at implementation
time

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.28

The Trusted Computing Base (TCB)

e Trusted Component:

- A system part we rely upon to operate
correctly for system security

- (A part that can violate our security goals)
e Trustworthy components:
- System parts that we're justified in
trusting (assume correct operation)
e In Unix, the super-user (root) is trusted
- Hopefully they are also trustworthy...
e Trusted Computing Base:

- System portion(s) that must operate
correctly for system security goals to be
assured

Joseph CS161 ©UCB Fall 2006

10/16/06 Lec 13.29

TCB Definition

* We rely on every component in TCB
working correctly

e Anything outside isn’t relied upon
- Can't defeat system’s security goals even
if it misbehaves or is malicious

e TCB definition:

- Must be large enough so that nothing
outside the TCB can violate security

10/16/06 Joseph CS161 @UCB Fall 2006 Lec 13.30

Page 5

TCB Example

« Security goal: only authorized users
allowed to log into my system using SSH
* What is the TCB?
- TCB includes SSH daemon (it makes
authentication and authorization decisions)
- If sshd has a bug (buf overrun) or was
maliciously reprogrammed (backdoor), it

can violate security goal by allowing
unauthorized access

- TCB also includes OS (can tamper with

sshd’s operation and address space)
- TCB also includes CPU (rely on it to
execute sshd correctly)
Joseph CS161 ©UCB Fall 2006

10/16/06 Lec 13.31

TCB Example (continued)

* What about a web browser application on
the same machine? Is it in the TCB?
» Hopefully not!
- OS is supposed to protect sshd from other
unprivileged applications
* Another ex.: network perimeter firewall

- Enforces security goal that only authorized
connections are permitted into internal net

e In this example, the firewall is the TCB
for this security goal

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.32

TCB as Reference Monitor

* There's always a mechanism responsible
for enforcing an access control policy

- Recall firewall lecture: this mechanism is a
Reference Monitor

« Reference monitor is the TCB for security
goal of ensuring access control policy

- A reference monitor is just a TCB
specialized for access control

« Recall: three guiding principles for
reference monitor

- Unbypassable, Tamper-resistant, and
Verifiable
10/16/06

Joseph CS161 ©UCB Fall 2006 Lec 13.33

TCB as a Reference Monitor

* Unbypassable:

- No way to bypass the TCB and breach security
* Tamper-resistant:

- TCB protected from tampering by anyone else

» Other system parts (outside TCB) shouldn’t be
able to modify TCB’'s code or state

- The integrity of the TCB must be maintained
« Verifiable:
- Should be possible to verify TCB correctness

»Means TCB should be as simple as possible
(beyond the state of the art to verify complex
subsystems)

10/16/06

Joseph CS161 ©UCB Fall 2006 Lec 13.34

BREAK

Why Keep the TCB Simple and Small?

* Good practice!

- Less code you write, less chances to make
mistakes or introduces implementation flaws

¢ Industry standard error rates are 1-5
defects per thousand Lines of Code (kLoC)
- TCB containing 1 kLoC might have 1-5 defects
- 100 kLoC TCB might have 100-500 defects!
- (Windows XP is about 40,000 kLoC of TCB!)
» Almost all of which is the TCB
* Lesson:

- Shed code and design system so as much code
can be moved outside the TCB as possible

10/16/06

Joseph CS161 @UCB Fall 2006 Lec 13.36

Page 6

TCBs: What are They Good for?

« Is the TCB concept just an esoteric idea?
-No, it is a very powerful and pragmatic idea
- TCB allows primitive, yet effective modularity

* Separates system into two parts: security-
critical (TCB) and everything else

« Building secure and correct systems is hard!
- More pieces makes security assurance harder

- Only parts in TCB must be correct for system
security —> focus efforts where they matter

- Making TCB small gives us better odds of
ending up with a secure system

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.37

Ex: Email Retention for National Archives

« National Archives chartered with saving a
copy of every email ever sent by
government officials
- Security Goal: Ensure that saved records
cannot be deleted or destroyed

- Someone being investigated might try to
destroy embarrassing or incriminating
archived documents

* We need an “append-only” document
storage system

- How can we do it?

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.38

A Possible Approach

* Augment email program on every desktop
computer to save a copy of all emails to a
special directory on that computer
-What"s the TCB for this approach?

» TCB includes every copy of email application on
every government machine

» Also OS, all privileged SW, and sys admins
e That's an awfully large TCB!
- Unlikely that everything in TCB works correctly
e Also, any sys admin can delete files from the
special directory after the fact
* We'd better find a better solution!!

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.39

Another Approach
e Set up a high-speed networked printer
- An email is “collected” when it is printed
- Printer room is locked to prevent tampering
-What'’s the TCB in this system?
» TCB includes room’'s physical security
» Also includes the printer

» Suppose we add a ratchet to paper spool so
that it can only rotate forward

- Don't need to trust the rest of the printer
* Wow!

- TCB is only this ratchet, and room’s physical
security, nothing else!

e But, our approach uses a lot of paper!

10/16/06

Joseph CS161 ©UCB Fall 2006 Lec 13.40

An All-Electronic Approach
* Networked PC running special server SW
- Accepts email msgs and adds them its local FS

- FS carefully implemented to provide write-once
semantics: once a file is created, it can never
be overwritten or deleted

- Packet filter blocks all non-email connections
* What's in the TCB now?

- Server PC/app/OS/FS, privileged apps on PC,
packet FW, PC's sys admins, room’s physical
security, ..

« TCB is bigger than with a printer, but smaller
than all machines approach’s TCB

e | think you*ve earned your consulting fee

10/16/06 Joseph CS161 ©UCB Fall 2006

Lec 13.41

TCB Principles Summary

* Know what is in the TCB

- Design your system so that the TCB is clearly
identifiable

e Try to make the TCB as unbypassable,
tamper-resistant, and verifiable as possible
« Keep It Simple, Stupid (KISS)
- The simpler the TCB, the greater the chances
you can get it right

« Decompose for security

- Choose a system decomposition/modularization
based on simple/clear TCB

» Not just functionality or performance grounds

10/16/06 Joseph CS161 @UCB Fall 2006 Lec 13.42

Page 7

Three Cryptographic Principles

« Three principles widely accepted in crypto
community that seem useful in computer
security
- Conservative Design
- Kerkhoff's Principle

- Proactively Study Attacks

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.43

1. Conservative Design

e Systems should be evaluated according to
worst plausible security failure, under
assumptions favorable to attacker

- Doug Gwyn came up with this formulation

e If you find such circumstance where the
system can be rendered insecure, then
you should seek a more secure system

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.44

2. Kerkhoff's Principle

* Cryptosystems should remain secure even
when the attacker knows all internal
details of the system

* The key should be the only thing that
must be kept secret

e If your secrets are leaked, it is a lot
easier to change the key than to change
the algorithm

10/16/06 Joseph CS161 ©UCB Fall 2006

Lec 13.45

3. Proactively Study Attacks

« We must devote considerable effort to
trying to break our own systems

- How we can gain confidence in their security
e Other reasons:
- In security game, attacker gets last move

-Very costly if a security hole is discovered
after wide system deployment
e Pays to try to identify attacks before bad
guys find them

- Gives us lead time to close security holes
before they are exploited in the wild

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.46

Principles for Secure Systems

* General principles for secure system design

- Many drawn from a classic 1970s paper by Saltzer
and ‘Schroeder

e 1. Security is Economics

- No system is 100% secure against all attacks
»Only need to resist a certain level of attack
»No point buying a $10K firewall to protect

$1K worth of trade secrets

- Often helpful to quantify level of effort an

attacker would expend to break the system.

- Adi Shamir once wrote, “There are no secure
systems, only degrees of insecurity”

» A lot of the science of computer security
comes in measuring the degree of insecurity

10/16/06 Joseph CS161 ©UCB Fall 2006

Lec 13.47

Economics Analogy

» Safes come with a security level rating
» Consumer-grade safe:

- Rated to resist attack for up to 5 minutes
by anyone without tools

¢ High-end safe might be rated TL-30
- Secure against burglar with safecracking
tools and less than 30 minutes access

-We can hire security guards with a less
than 30 minute response time to any
intrusion

10/16/06 Joseph CS161 @UCB Fall 2006 Lec 13.48

Page 8

Corollary of This Principle

« Focus your energy on securing weakest links

- Security is like a chain: it is only as secure
as the weakest link

- Attackers follow the path of least
resistance, and will attack system at its
weakest point

* No point in putting an expensive high-end

deadbolt on a screen door

- Attacker isn't going to bother trying to pick
the lock when he can just rip out the screen
and step through!

Lec 13.49

10/16/06 Joseph CS161 ©UCB Fall 2006

2. Least Privilege
¢ Minimize how much privilege you give each
program and system component
- Only give a program the minimum access
privileges it legitimately needs to do its job
e Least privilege is a powerful approach

- Doesn’t reduce failure probability, but can
reduce expected cost of failures
« Less privilege a program has, less harm it
can do if it goes awry or runs amok
- Computer-age version of shipbuilder’s notion
of “watertight compartments”:

» Even if one compartment is breached, we
minimize damage to rest of system’s integrity

Lec 13.50

10/16/06 Joseph CS161 ©UCB Fall 2006

Principle of Least Privilege Examples

* Can help reduce damage caused by buffer
overruns or other program vulnerabilities
- Intruder gains all the program’s privileges

- Fewer privileges a program has, less harm
done if it is compromised

e How is Unix in terms of least privilege?
- Answer: Pretty lousy!
- Programs gets all privileges of invoking users

-1 edit a file and editor receives all my user
account’s privileges (read, modify, delete)
« Strictly speaking editor only needs access
to file being edited to get job done
Joseph CS161 ©UCB Fall 2006

10/16/06 Lec 13.51

Principle of Least Privilege Examples

e How is Windows in terms of least privilege?

- Answer: Just as lousy!

- Arguably worse, as many users run as
Administrator and many Windows programs
require Administrator access to run

« Every program receives total power over
the whole computer!!

* Microsoft's security team recognizes this
risk

- Advice: Use limited privilege account and
“Run As...”

10/16/06 Joseph CS161 ©UCB Fall 2006 Lec 13.52

Page 9

