
Page 1

CS 194-1 (CS 161)
Computer Security

Lecture 14

Principles; Software security
(defensive programming)

October 18, 2006
Prof. Anthony D. Joseph

http://cs161.org/

Lec 14. 210/18/06 Joseph CS161 ©UCB Fall 2006

Review
• Attackers will exploit any and all flaws!

– Buffer overruns, format string usage errors,
implicit casting, TOCTTOU, …

• Trusted Computing Base (TCB)
– System portion(s) that must operate correctly
for system security goals to be assured

– Desired properties: Reference Monitor
• Three Cryptographic principles

– Conservative Design, Kerkhoff’s Principle,
Proactively Study Attacks

• First two principles
– Security is Economics, Least Priviledge

Lec 14. 310/18/06 Joseph CS161 ©UCB Fall 2006

Goals for Today
• Principles for building secure systems

– 11 other principles
– Principles are neither necessary nor sufficient
to ensure a secure system design, but they
are often very helpful

– Goal is to explore what you can do at design
time to improve security

• Implementation techniques to avoid security
holes when writing code
– Several good practices
– Lots of overlap with software engineering and
general software quality, but security places
heavier demands

Lec 14. 410/18/06 Joseph CS161 ©UCB Fall 2006

3. Use Fail-Safe Defaults
• Use default-deny polices

– Start by denying all access, then allow only
that which has been explicitly permitted

• Ensures that if security mechanisms fail
or crash, default will be secure behavior

• Example: Packet filter is a router
– Failure means no packets will be routed

» Fail-safe behavior
– Fail-open behavior much more dangerous

» Attacker just waits for packet filter to
crash (or induces crash) and then the fort
is wide open!

Lec 14. 510/18/06 Joseph CS161 ©UCB Fall 2006

Non-Fail-Safe Defaults Examples
• SunOS machines used to ship with + in
/etc/hosts.equiv file
– Allowed anyone with root access on any
machine on the Internet to log into your
machine as root

• Irix machines used to ship with xhost +
in their X Windows configuration files
– Allowed anyone to connect to Xserver

Lec 14. 610/18/06 Joseph CS161 ©UCB Fall 2006

4. Separation of Responsibility
• Split up privilege

– No one person or program has complete power
– Require more than one party to approve before
access is granted

• Two-party rule examples
– Movie theater: pay teller and get ticket stub,
then separate employee tears ticket in half,
collects a half of it and puts it in lockbox

» Helps prevent insider fraud (under-/over-charge)
– Most companies: purchases over certain amount
must be approved by both requesting employee
and a purchasing officer

» Helps prevent insider fraud in vendor choice

Page 2

Lec 14. 710/18/06 Joseph CS161 ©UCB Fall 2006

Nuclear Two-Party Rule
• Minuteman nuclear missile launch control ctr

– Underground control of ten nuclear missiles
– Two launch officers must agree to launch missiles
– Five control ctrs for squadron of 50 missiles

• Decommissioned center preserved at Whiteman
AFB, Missouri

Lec 14. 810/18/06 Joseph CS161 ©UCB Fall 2006

5. Defense in Depth
• A closely related principle

– “You can recognize a security guru
because they’re wearing both a belt
and a set of suspenders”

• Principle is that with multiple
redundant protections, all of them
have to be breached to endanger
system security

Lec 14. 910/18/06 Joseph CS161 ©UCB Fall 2006

6. Psychological Acceptability
• Important that users buy into security model
• Examples

– Company FW admin capriciously blocks apps
that engineers need to get their jobs done

» They view FW as damage and tunnel around it
– Sys admin makes all passwords auto-generated
long unmemorizable strings changed monthly

» Users simply write down their passwords on
yellow post-its attached to their screens

• No system can remain secure for long when all
its users actively seek to subvert it
– Sys admins aren’t going to win this game…
– Well-intentioned edicts can ultimately turn out
to be counter-productive

Lec 14. 1010/18/06 Joseph CS161 ©UCB Fall 2006

7. Usability
• Security systems must be usable by ordinary
people and take into account humans’ role

• Example
– Web browser pops up security warnings, but no
indication of steps you should take

» What do you do? Like everyone else click “OK”…
– NSA’s crypto equipment stores key material on
small physical token shaped like ordinary key

» To activate encryption device, insert key into
device’s slot and turn it

» Intuitively understandable interface, even for
18-year-olds soldiers with minimal training

Lec 14. 1110/18/06 Joseph CS161 ©UCB Fall 2006

8. Ensure Complete Mediation
• When enforcing access control policies,
ensure that every access to every object
is checked

• Caching is a slightly sticky subject
– Can sometimes avoid checking every access
and allowing security decisions to be
cached, but beware

• What if context relevant to security
decision changes, and cache entry isn’t
invalidated?
– Someone might get away with accessing
something they shouldn’t

Lec 14. 1210/18/06 Joseph CS161 ©UCB Fall 2006

9. Least Common Mechanism
• Be careful with shared code!.

– Original assumptions may no longer be valid
– Threat model may have changed

• Example: Internet users were once only
researchers, who trusted each other
– Most networking protocols designed during
those days assumed that all other network
participants were benign and non-malicious

– Not true today! Millions of users, many
malicious ones…

– Many old network protocols are suffering
under the strain of attack (e.g., spam)

Page 3

Lec 14. 1310/18/06 Joseph CS161 ©UCB Fall 2006

10. Detect if You Can’t Prevent
• If you can’t prevent break-ins, at least
detect them and provide a way to identify
the perpetrator

• Forensics are important
– Keep audit logs so you can analyze break-
ins afterwards

• Example: FIPS 140-1 federal standard
for tamper-resistant hardware
– Type III devices (highest level) are very
expensive

– Type II devices are only required to be
tamper-evident (e.g., a visibly broken seal)

» Lower cost and usable in broad set of apps
Lec 14. 1410/18/06 Joseph CS161 ©UCB Fall 2006

11. Orthogonal Security
• We’ve seen this one before…

• Security mechanisms implemented
orthogonally (transparently) to rest of
system are useful in protecting legacy
systems

• Also, allow us to improve assurance by
composing multiple mechanisms in series

Lec 14. 1510/18/06 Joseph CS161 ©UCB Fall 2006

12. Don’t Rely on Security Through Obscurity

• We’ve seen this one in the last lecture…
• ‘Security through obscurity’ phrase

– Systems that rely on secrecy of design,
algorithms, or source code to be secure

• Claimed reasoning:
– “This system is so obscure, only 100
people understand anything about it, so
what are the odds that adversaries will
bother attacking it?”

• Self-defeating approach
– As system becomes more popular, more
incentive to attack it, and cannot rely on
its obscurity to keep attackers away…

Lec 14. 1610/18/06 Joseph CS161 ©UCB Fall 2006

Secret Designs
• Very hard to keep system design secret
from a dedicated adversary
– Every running installation has binary
executable code that can be disassembled

– Hard to assess chances that secret will
leak or difficulty of learning the secret

• If secret ever leaks, can be hard to
update widely-deployed systems
– No recourse if someone ever succeeds

• History has a lousy track record
– Many systems that have relied upon code
or design secrecy for security have failed
miserably

Lec 14. 1710/18/06 Joseph CS161 ©UCB Fall 2006

What About Open Source?
• Are open-source applications more secure
than closed-source applications?
– Not necessarily

• Don’t trust any system that relies on
security through obscurity

• Be skeptical about claims that keeping
source code secret makes the system
significantly more secure

Lec 14. 1810/18/06 Joseph CS161 ©UCB Fall 2006

13. Design Security in, From the Start
• Often doesn’t work to retrofit security into
an existing implemented application
– Stuck with chosen architecture
– Can’t change system decomposition to ensure
any of the good principles we discussed

• Backwards compatibility often particularly
painful, because you have to support worst
insecurities of all previous versions

Page 4

Lec 14. 1910/18/06 Joseph CS161 ©UCB Fall 2006

Administrivia
• Grading policy

– We use EECS upper division class guidelines
» Overall class GPA 2.7 – 3.1, avg grade B or B+

– Roughly 23% A’s, 50% B’s, 20% C’s, 5% D’s,
and 2% F's

• Midterm grade reports for potential D’s and
F’s have been posted to BearFacts
– If you receive a notice, see your TA or one of
the profs

– If you skipped HW#1, don’t skip others
• Projects will have a journal – details in section

Lec 14. 2010/18/06 Joseph CS161 ©UCB Fall 2006

Writing Secure Code
• Goal is eliminating all security-relevant
bugs, no matter how unlikely they are to
be triggered in normal execution
– Intelligent adversary will find abnormal
ways to interact with our code

• Different goal from software reliability
– Focus is on most likely to happen bugs
– Can ignore obscure condition bugs

• Dealing with malice is much harder than
dealing with mischance

Lec 14. 2110/18/06 Joseph CS161 ©UCB Fall 2006

Three Fundamental Techniques
• (1) Modularity and decomposition for
security

• (2) Formal reasoning about code using
invariants

• (3) Defensive programming

• In the next lecture, we’ll discuss
programming language-specific issues and
integrating security into the software
lifecycle

Lec 14. 2210/18/06 Joseph CS161 ©UCB Fall 2006

Modularity
• Decompose well-designed system into modules

– All interactions through well-defined interfaces
– Each module performs a clear function

» “What functionality it provides” not “how it is
implemented”

• Granularity depends on system and language
– A module typically has state and code
– In Java (object-oriented), a class (or a few
closely related classes)

– In C, its own file with a clear external
interface, along with many internal functions
that are not externally visible or callable

Lec 14. 2310/18/06 Joseph CS161 ©UCB Fall 2006

Module Design
• Focus on interface design

– Interface is the caller-callee contract
– Should change less often than implementation
– Caller only needs to understand interface
– Should interact only through defined interface

» No global variables for communication
• A module is a blob

– The interface is its surface area
– The implementation is its volume
– Thoughtful design has narrow and conceptually
clean interfaces and modules have low surface
area to volume ratio

Lec 14. 2410/18/06 Joseph CS161 ©UCB Fall 2006

Module Decomposition Suggestions
• Minimize the harm caused by module failure

– Contain damage from module penetration
(buffer overrun) or unexpected behavior
(implementation bug)

• Draw a security perimeter around each
module
– Keep one misbehaving module from changing
other modules’ behaviors

• Plan for failure:
– Think in advance about consequences of each
module being compromised

– Structure system to reduce consequences

Page 5

Lec 14. 2510/18/06 Joseph CS161 ©UCB Fall 2006

Monolithic Architecture
• All modules in a common address space

– Unecessary security risk: compromise one
module and all others can be penetrated

• Alternatives:
– Java isolates modules using type-safety
– Languages like C require placing each module
in its own process to protect it

• Follow principle of least privilege at a
module granularity
– Provide each module with the least privilege
necessary to get its job done

– Architect system so most modules need only
minimal privileges

Lec 14. 2610/18/06 Joseph CS161 ©UCB Fall 2006

Module Design with Least Privilege
• Can you structure a complex system of
computations that require lots of code so
they’re isolated in modules with few
privileges?

• Modules with extra privileges should have
very little code
– The more privilege for a module, the
greater the confidence we need that it is
correct

– More confidence generally requires less
code…

Lec 14. 2710/18/06 Joseph CS161 ©UCB Fall 2006

Module Example
• Break up a network server listening on a
port below 1024 into two pieces:
– Small start-up wrapper and the app itself
– Binding to 0 – 1023 port requires root
privileges, so let wrapper run as root, bind
to desired port, and then spawn the app
passing it the bound port

• The app itself then runs as non-root user
– Limits damage if app is compromised

• Wrapper can be written in a few dozen
lines of code making thorough validation
possible

Lec 14. 2810/18/06 Joseph CS161 ©UCB Fall 2006

Web Server
• Composition of two modules

– 1. Handles incoming network connections
and identifies requested URLs

» No privileges (root wrapper binds port 80)
– 2. Translates URL into filename and reads
it from the filesystem

» Might run as special www userid and only
documents intended to be publicly visible
are readable by user www

• Defense in Depth/Layered Defense
– Leverage OS’s file access controls so that
even if second module is penetrated, an
attacker can’t harm rest of system

Lec 14. 2910/18/06 Joseph CS161 ©UCB Fall 2006

Reasoning About Code
• Functions make certain assumptions about their
arguments
– Caller must make sure assumptions are valid
– These are often called preconditions

• Precondition for f() is an assertion (a logical
proposition) that must hold at input to f()
– Function f() must behave correctly if its
preconditions are met

– If any precondition is not met, all bets are off
• Caller must call f() such that preconditions
true – an obligation on the caller, and callee
may freely assume obligation has been met

Lec 14. 3010/18/06 Joseph CS161 ©UCB Fall 2006

Simple Precondition Example
• /* Requires: p != NULL */
int deref(int *p) {

return *p;
}

• Unsafe to dereference a null pointer
– Impose precondition that caller of deref()
must meet: p ? NULL holds at entrance to
deref()

• If all callers ensure this precondition, it
will be safe to call deref()

• Can combine assertions using logical
connectives (and, or, implication)
– Also existentially and universally quantified
logical formulas

Page 6

Lec 14. 3110/18/06 Joseph CS161 ©UCB Fall 2006

Another Example
• /* Requires:

a != NULL
for all j in 0..n-1, a[j] != NULL */

int sum(int *a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

• Second precondition:
– Forall j.(0 = j < n) ? a[j]?NULL
– If you’re comfortable with formal logic, write
your assertions this way for precision

• Not necessary to be so formal
– Goal is to think explicitly about assumptions
and communicate requirements to others

BREAK

Lec 14. 3310/18/06 Joseph CS161 ©UCB Fall 2006

Postconditions
• Postcondition for f() is an assertion that
holds when f() returns
–f() has obligation of ensuring condition is
true when it returns

– Caller may assume postcondition has been
established by f()

• Example:
• /* Ensures: retval != NULL */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;

} Lec 14. 3410/18/06 Joseph CS161 ©UCB Fall 2006

Process for Writing Function Code
• First write down its preconditions and
postconditions
– Specifies what obligations caller has and
what caller is entitled to rely upon

• Verify that, no matter how function is
called, if precondition is met at function’s
entrance, then postcondition is guaranteed
to hold upon function’s return
– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either
specification (preconditions/postconditions)
or implementation (function code)

Lec 14. 3510/18/06 Joseph CS161 ©UCB Fall 2006

Proving Precondition? Postcondition
• Basic idea:

– Write down a precondition and postcondition
for every line of code

– Apply same sort of reasoning as for function
• Requirement:

– Each statement ’s postcondition must match
(imply) precondition of any following statement

– At every point between two statements, write
down invariant that must be true at that point

» Invariant is postcondition for preceding
statement, and precondition for next one

Lec 14. 3610/18/06 Joseph CS161 ©UCB Fall 2006

Example
• Easy to tell if an isolated statement fits
its pre- and post-conditions

• Valid postcondition for “v=0;” is v=0 (no
matter what the precondition is)
– Or, if precondition for “v=v+1;” is v=5,
then a valid postcondition is v=6

• If precondition for “v=v+1;” is w=100,
then a valid postcondition is w=100
– Assuming v and w do not alias

Page 7

Lec 14. 3710/18/06 Joseph CS161 ©UCB Fall 2006

Loop Invariant
• An assertion that is true at entrance to the loop, on

any path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body

• Example: Factorial function code
– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive

Lec 14. 3810/18/06 Joseph CS161 ©UCB Fall 2006

Verifying Invariant Correctness
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int i, t; /* n>=1 */
i = 1; /* n>=1 && i==1 */
t = 1; /* n>=1 && i==1 && t==1 */
while (i <= n) {

/* 1<=i && i<=n && t>=1 <-- loop invariant */
t *= i; /* 1<=i && i<=n && t>=1 */
i++; /* 2<=i && i<=n+1 && t>=1 */

} /* i>n && t>=1 */
return t;

}
• Easy if we examine each step:

– Function’s precondition implies invariant at function body start
– Invariant at end of function body implies function’s postcondition
– If each statement matches invariant immediately before and

after it, everything’s OK
• That leaves the loop invariant…

Lec 14. 3910/18/06 Joseph CS161 ©UCB Fall 2006

Verifying the Loop Invariant
• Loop invariant: 1<=i && i<=n && t>=1
• Prove it is true at start of first loop iteration

– Follows from:
» n=1 ∧ i=1 ∧ t=1 ? 1=i=n ∧ t=1
» if i=1, then certainly i=1

• Prove that if it holds at start of any loop iteration,
then it holds at start of next iteration (if there’s one)
– True, since invariant at end of loop body 2=i=n+1 ∧ t=1
and loop termination condition i=n implies invariant at
start of loop body 1=i=n ∧ t=1

• Follows by induction on number of iterations that loop
invariant is always true on entrance to loop body
– Thus, fact() will always make postcondition true, as
precondition is established by its caller

Lec 14. 4010/18/06 Joseph CS161 ©UCB Fall 2006

Another Example: Recursion
• /* Requires: n >= 1 */
int fact(int n) {

int t;
if (n == 1)

return 1;
t = fact(n-1);
t *= n;
return t;

}

• Do you see how to prove that this code
always outputs a positive integer?

Lec 14. 4110/18/06 Joseph CS161 ©UCB Fall 2006

Analysis
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int t;
if (n == 1)

return 1; /* n>=2 */
t = fact(n-1); /* t>=0 */
t *= n; /* t>=0 */
return t;

}

• Before recursive call to fact(), we know:
–n=1 (by precondition), n?1 (since if stmt didn’t
follow then branch), and n is an integer

– Follows that n=2, or n-1=1 (means precondition
is met when making recursive call)

• Can conclude that fact(n-1) return value is
positive from postcondition for fact()

Lec 14. 4210/18/06 Joseph CS161 ©UCB Fall 2006

Function Post-/Pre-Conditions
• Any time we see a function call, we have
to verify that its precondition will be met
– Then we can conclude its postcondition
holds and use this fact in our reasoning

• Annotating every function with pre- and
post-conditions enables modular reasoning
– Can verify function f() by looking only its
code and the annotations on every function
f() calls

» Can ignore code of all other functions and
functions called transitively

– Makes reasoning about f() an almost
purely local activity

Page 8

Lec 14. 4310/18/06 Joseph CS161 ©UCB Fall 2006

Documentation
• Pre-/post-conditions serve as useful
documentation
– To invoke Bob’s code, Alice only has to look
at pre- and post-conditions – she doesn’t
need to look at or understand his code

• Useful way to coordinate activity between
multiple programmers:
– Each module assigned to one programmer,
and pre-/post-conditions are a contract
between caller and callee

– Alice and Bob can negotiate the interface
(and responsibilities) between their code at
design time

Lec 14. 4410/18/06 Joseph CS161 ©UCB Fall 2006

Avoiding Security Holes
• To avoid security holes (or program crashes)

– Some implicit requirements code must meet
» Must not divide by zero, make out-of-bounds
memory accesses, or deference null ptrs, …

• We can try to prove that code meets these
requirements using same style of reasoning
– Ex: when a pointer is dereferenced, there is
an implicit precondition that pointer is non-null
and in-bounds

Lec 14. 4510/18/06 Joseph CS161 ©UCB Fall 2006

Proving Array Accesses are in-bounds
• /* Requires: a != NULL and a[] holds n elements */

int sum(int a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)

/* Loop invariant: 0 <= i < n */
total += a[i];

return total;
}

• Loop invariant true at entrance to first iteration
– First iteration ensures i=0

• It is true at entrance to subsequent iterations
– Loop termination condition ensures i<n, and i only
increases

• So array access a[i] is within bounds

Lec 14. 4610/18/06 Joseph CS161 ©UCB Fall 2006

Buffer Overruns
• Proving absence of buffer overruns might
be much more difficult
– Depends on how code is structured

• Instead of structuring your code so that
it is hard to provide a proof of no buffer
overruns, restructure it to make absence
of buffer overruns more evident

• Lots of research into automated theorem
provers to try to mathematically prove
validity of alleged pre-/post-conditions
– Or to help infer such invariants

Lec 14. 4710/18/06 Joseph CS161 ©UCB Fall 2006

Pre-/Post-Condition Summary
• Looks tedious, but gets easier over time

– With practice you can avoid writing down
detailed invariants before every statement

» Think about data structures and code in terms
of invariants first, then write the code

– Usually can avoid formal notation, omit obvious
parts, and only write down important ones

» Usually writing down pre-/post-conditions and
loop invariant for every loop is enough

• Reasoning about code takes time and energy
– Worth it for highly secure code

Lec 14. 4810/18/06 Joseph CS161 ©UCB Fall 2006

Defensive Programming
• Like defensive driving, but for code:

– Avoid depending on others, so that if they do something
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is
given invalid or unexpected inputs:
– Shouldn’t crash, cause undesirable side-effects, or
produce dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave
• General strategy

– Assume attacker controls module’s inputs, make sure
nothing terrible happens

Page 9

Lec 14. 4910/18/06 Joseph CS161 ©UCB Fall 2006

Defensive Programming
• Write module M to provide functionality
to a single client
– M should provide useful responses if client
provides valid inputs

– If client provides an invalid input, then M
is no longer under any obligation to provide
useful output

» M must still protect itself (and rest of
system) from being subverted by malicious
inputs

Lec 14. 5010/18/06 Joseph CS161 ©UCB Fall 2006

Very Simple Example
• char charAt(char *str, int index) {

return str[index];
}

• Function is too fragile!
–charAt(NULL, any) will cause a crash
–charAt(s, i) causes a buffer overrun if i is
out-of-bounds (too small or large) for s

• Neither can be easily fixed without changing
function’s interface

Lec 14. 5110/18/06 Joseph CS161 ©UCB Fall 2006

Another Simple Example with Many Flaws
• char *double(char *str) {

size_t len = strlen(str);
char *p = malloc(2*len+1);
strcpy(p, str);
strcpy(p+len, str);
return p;

}
• double(NULL) will cause a crash

– Fix: test if str is a null ptr, and if so, return NULL
• Return value of malloc() is not checked

– If out-of-memory, malloc() will return null ptr and
call to strcpy() will cause program crash

– Fix: test return value of malloc()
• If str is very long, then expression 2*len+1 will

overflow, potentially causing a buffer overrun
– 231 byte input str on 32-bit machine will have 1 byte
allocated, and strcpy will immediately trigger a
heap overrun Lec 14. 5210/18/06 Joseph CS161 ©UCB Fall 2006

Trickier Example: Java Sort Routine
• Accepts array of objects that implements
Comparable interface and sorts them
– Each object implements compareTo() method, and
x.compareTo(y) must return a negative, zero, or
positive integer, depending on whether x is less than,
equal to, or greater than y

• Implementing a defensive sort routine is actually
fairly tricky, because a malicious client could supply
objects whose compareTo() method behaves
unexpectedly
– Calling x.compareTo(y) twice might yield two
different results (if x or y are malicious)

– Or, consider: x.compareTo(y) == 1,
y.compareTo(z) == 1, and z.compareTo(x) == 1

• Sort routine might go into an infinite loop or worse

Lec 14. 5310/18/06 Joseph CS161 ©UCB Fall 2006

Some General Advice
• 1. Check for error conditions

– Always check return values of all calls
(assuming this is how they indicate errors)

– In languages with exceptions, can locally
handle it or propagate (expose) to caller

– Check error paths very carefully
» Often poorly tested, so they often contain
memory leaks and other bugs

• What if you detect an error condition?
– For expected errors, try to recover
– Harder to recover from unexpected errors
– Always safe to abort processing and
terminate if an error condition is signaled
(fail-stop behavior)

