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Review
• Attackers will exploit any and all flaws!

– Buffer overruns, format string usage errors, 
implicit casting, TOCTTOU, …

• Trusted Computing Base (TCB)
– System portion(s) that must operate correctly 
for system security goals to be assured

– Desired properties: Reference Monitor
• Three Cryptographic principles

– Conservative Design, Kerkhoff’s Principle, 
Proactively Study Attacks

• First two principles
– Security is Economics, Least Priviledge
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Goals for Today
• Principles for building secure systems

– 11 other principles
– Principles are neither necessary nor sufficient 
to ensure a secure system design, but they 
are often very helpful

– Goal is to explore what you can do at design 
time to improve security

• Implementation techniques to avoid security 
holes when writing code
– Several good practices
– Lots of overlap with software engineering and 
general software quality, but security places 
heavier demands
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3. Use Fail-Safe Defaults
• Use default-deny polices

– Start by denying all access, then allow only 
that which has been explicitly permitted

• Ensures that if security mechanisms fail 
or crash, default will be secure behavior

• Example: Packet filter is a router
– Failure means no packets will be routed

» Fail-safe behavior
– Fail-open behavior much more dangerous 

» Attacker just waits for packet filter to 
crash (or induces crash) and then the fort 
is wide open!
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Non-Fail-Safe Defaults Examples
• SunOS machines used to ship with + in 
/etc/hosts.equiv file
– Allowed anyone with root access on any 
machine on the Internet to log into your 
machine as root

• Irix machines used to ship with xhost +
in their X Windows configuration files
– Allowed anyone to connect to Xserver
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4. Separation of Responsibility
• Split up privilege

– No one person or program has complete power
– Require more than one party to approve before 
access is granted

• Two-party rule examples
– Movie theater: pay teller and get ticket stub, 
then separate employee tears ticket in half, 
collects a half of it and puts it in lockbox

» Helps prevent insider fraud (under-/over-charge)
– Most companies: purchases over certain amount 
must be approved by both  requesting employee 
and a purchasing officer

» Helps prevent insider fraud in vendor choice
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Nuclear Two-Party Rule
• Minuteman nuclear missile launch control ctr

– Underground control of ten nuclear missiles
– Two launch officers must agree to launch missiles
– Five control ctrs for squadron of 50 missiles

• Decommissioned center preserved at Whiteman 
AFB, Missouri
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5. Defense in Depth
• A closely related principle

– “You can recognize a security guru 
because they’re wearing both a belt 
and a set of suspenders”

• Principle is that with multiple 
redundant protections, all of them 
have to be breached to endanger 
system security
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6. Psychological Acceptability
• Important that users buy into security model
• Examples

– Company FW admin capriciously blocks apps 
that engineers need to get their jobs done

» They view FW as damage and tunnel around it
– Sys admin makes all passwords auto-generated 
long unmemorizable strings changed monthly

» Users simply write down their passwords on 
yellow post-its attached to their screens

• No system can remain secure for long when all 
its users actively seek to subvert it
– Sys admins aren’t going to win this game…
– Well-intentioned edicts can ultimately turn out 
to be counter-productive
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7. Usability
• Security systems must be usable by ordinary 
people and take into account humans’ role

• Example
– Web browser pops up security warnings, but no 
indication of steps you should take

» What do you do? Like everyone else click “OK”…
– NSA’s crypto equipment stores key material on 
small physical token shaped like ordinary key

» To activate encryption device, insert key into 
device’s slot and turn it

» Intuitively understandable interface, even for 
18-year-olds soldiers with minimal training
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8. Ensure Complete Mediation
• When enforcing access control policies, 
ensure that every access to every object 
is checked

• Caching is a slightly sticky subject
– Can sometimes avoid checking every access 
and allowing security decisions to be 
cached, but beware

• What if context relevant to security 
decision changes, and cache entry isn’t 
invalidated?
– Someone might get away with accessing 
something they shouldn’t
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9. Least Common Mechanism
• Be careful with shared code!.

– Original assumptions may no longer be valid
– Threat model may have changed

• Example: Internet users were once only 
researchers, who trusted each other
– Most networking protocols designed during 
those days assumed that all other network 
participants were benign and non-malicious

– Not true today! Millions of users, many 
malicious ones…

– Many old network protocols are suffering 
under the strain of attack (e.g., spam)
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10. Detect if You Can’t Prevent
• If you can’t prevent break-ins, at least 
detect them and provide a way to identify 
the perpetrator

• Forensics are important
– Keep audit logs so you can analyze break-
ins afterwards

• Example: FIPS 140-1 federal standard 
for tamper-resistant hardware
– Type III devices (highest level) are very 
expensive

– Type II devices are only required to be 
tamper-evident (e.g., a visibly broken seal)

» Lower cost and usable in broad set of apps
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11. Orthogonal Security
• We’ve seen this one before…

• Security mechanisms implemented 
orthogonally (transparently) to rest of 
system are useful in protecting legacy 
systems

• Also, allow us to improve assurance by 
composing multiple mechanisms in series
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12. Don’t Rely on Security Through Obscurity

• We’ve seen this one in the last lecture…
• ‘Security through obscurity’ phrase

– Systems that rely on secrecy of design, 
algorithms, or source code to be secure

• Claimed reasoning:
– “This system is so obscure, only 100 
people understand anything about it, so 
what are the odds that adversaries will 
bother attacking it?”

• Self-defeating approach
– As system becomes more popular, more 
incentive to attack it, and cannot rely on 
its obscurity to keep attackers away…
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Secret Designs
• Very hard to keep system design secret 
from a dedicated adversary
– Every running installation has binary 
executable code that can be disassembled

– Hard to assess chances that secret will 
leak or difficulty of learning the secret

• If secret ever leaks, can be hard to 
update widely-deployed systems
– No recourse if someone ever succeeds 

• History has a lousy track record
– Many systems that have relied upon code 
or design secrecy for security have failed 
miserably
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What About Open Source?
• Are open-source applications more secure 
than closed-source applications?
– Not necessarily

• Don’t trust any system that relies on 
security through obscurity

• Be skeptical about claims that keeping 
source code secret makes the system 
significantly more secure
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13. Design Security in, From the Start
• Often doesn’t work to retrofit security into 
an existing implemented application
– Stuck with chosen architecture 
– Can’t change system decomposition to ensure 
any of the good principles we discussed

• Backwards compatibility often particularly 
painful, because you have to support worst 
insecurities of all previous versions
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Administrivia
• Grading policy

– We use EECS upper division class guidelines
» Overall class GPA 2.7 – 3.1, avg grade B or B+

– Roughly 23% A’s, 50% B’s, 20% C’s, 5% D’s, 
and 2% F's

• Midterm grade reports for potential D’s and 
F’s have been posted to BearFacts
– If you receive a notice, see your TA or one of 
the profs 

– If you skipped HW#1, don’t skip others
• Projects will have a journal – details in section

Lec 14. 2010/18/06 Joseph CS161 ©UCB Fall 2006

Writing Secure Code
• Goal is eliminating all security-relevant 
bugs, no matter how unlikely they are to 
be triggered in normal execution
– Intelligent adversary will find abnormal 
ways to interact with our code

• Different goal from software reliability
– Focus is on most likely to happen bugs
– Can ignore obscure condition bugs

• Dealing with malice is much harder than 
dealing with mischance
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Three Fundamental Techniques
• (1) Modularity and decomposition for 
security

• (2) Formal reasoning about code using 
invariants

• (3) Defensive programming

• In the next lecture, we’ll discuss 
programming language-specific issues and 
integrating security into the software 
lifecycle
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Modularity
• Decompose well-designed system into modules

– All interactions through well-defined interfaces
– Each module performs a clear function

» “What functionality it provides” not “how it is 
implemented”

• Granularity depends on system and language
– A module typically has state and code
– In Java (object-oriented), a class (or a few 
closely related classes)

– In C, its own file with a clear external 
interface, along with many internal functions 
that are not externally visible or callable
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Module Design
• Focus on interface design

– Interface is the caller-callee contract
– Should change less often than implementation 
– Caller only needs to understand interface
– Should interact only through defined interface

» No global variables for communication
• A module is a blob

– The interface is its surface area
– The implementation is its volume
– Thoughtful design has narrow and conceptually 
clean interfaces and modules have low surface 
area to volume ratio
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Module Decomposition Suggestions
• Minimize the harm caused by module failure

– Contain damage from module penetration 
(buffer overrun) or unexpected behavior 
(implementation bug)

• Draw a security perimeter around each 
module
– Keep one misbehaving module from changing  
other modules’ behaviors

• Plan for failure:
– Think in advance about consequences of each 
module being compromised

– Structure system to reduce consequences
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Monolithic Architecture
• All modules in a common address space

– Unecessary security risk: compromise one 
module and all others can be penetrated

• Alternatives:
– Java isolates modules using type-safety
– Languages like C require placing each module 
in its own process to protect it

• Follow principle of least privilege at a 
module granularity
– Provide each module with the least privilege 
necessary to get its job done

– Architect system so most modules need only 
minimal privileges
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Module Design with Least Privilege
• Can you structure a complex system of 
computations that require lots of code so 
they’re isolated in modules with few 
privileges?

• Modules with extra privileges should have 
very little code
– The more privilege for a module, the 
greater the confidence we need that it is 
correct

– More confidence generally requires less 
code…

Lec 14. 2710/18/06 Joseph CS161 ©UCB Fall 2006

Module Example
• Break up a network server listening on a 
port below 1024 into two pieces:
– Small start-up wrapper and the app itself
– Binding to 0 – 1023 port requires root 
privileges, so let wrapper run as root, bind 
to desired port, and then spawn the app 
passing it the bound port

• The app itself then runs as non-root user
– Limits damage if app is compromised

• Wrapper can be written in a few dozen 
lines of code making thorough validation 
possible
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Web Server
• Composition of two modules

– 1. Handles incoming network connections 
and identifies requested URLs

» No privileges (root wrapper binds port 80)
– 2. Translates URL into filename and reads 
it from the filesystem

» Might run as special www userid and only 
documents intended to be publicly visible 
are readable by user www

• Defense in Depth/Layered Defense
– Leverage OS’s file access controls so that 
even if second module is penetrated, an 
attacker can’t harm rest of system
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Reasoning About Code
• Functions make certain assumptions about their 
arguments
– Caller must make sure assumptions are valid
– These are often called preconditions

• Precondition for f() is an assertion (a logical 
proposition) that must hold at input to f()
– Function f() must behave correctly if its 
preconditions are met

– If any precondition is not met, all bets are off
• Caller must call f() such that preconditions 
true – an obligation on the caller, and callee
may freely assume obligation has been met
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Simple Precondition Example
• /* Requires: p != NULL */
int deref(int *p) {

return *p;
}

• Unsafe to dereference a null pointer
– Impose precondition that caller of deref()
must meet: p ? NULL holds at entrance to 
deref()

• If all callers ensure this precondition, it 
will be safe to call deref()

• Can combine assertions using logical 
connectives (and, or, implication)
– Also existentially and universally quantified 
logical formulas
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Another Example
• /* Requires:

a != NULL
for all j in 0..n-1,  a[j] != NULL */

int sum(int *a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

• Second precondition: 
– Forall j.(0 = j < n) ? a[j]?NULL
– If you’re comfortable with formal logic, write 
your assertions this way for precision

• Not necessary to be so formal
– Goal is to think explicitly about assumptions 
and communicate requirements to others

BREAK
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Postconditions
• Postcondition for f() is an assertion that 
holds when f() returns
–f() has obligation of ensuring condition is 
true when it returns

– Caller may assume postcondition has been 
established by f()

• Example:
• /* Ensures: retval != NULL */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;
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Process for Writing Function Code
• First write down its preconditions and 
postconditions
– Specifies what obligations caller has and 
what caller is entitled to rely upon

• Verify that, no matter how function is 
called, if precondition is met at function’s 
entrance, then postcondition is guaranteed 
to hold upon function’s return 
– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either 
specification (preconditions/postconditions) 
or implementation (function code)
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Proving Precondition? Postcondition
• Basic idea:

– Write down a precondition and postcondition
for every line of code

– Apply same sort of reasoning as for function
• Requirement:

– Each statement ’s postcondition must match 
(imply) precondition of any following statement

– At every point between two statements, write 
down invariant that must be true at that point

» Invariant is postcondition for preceding 
statement, and precondition for next one
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Example
• Easy to tell if an isolated statement fits 
its pre- and post-conditions

• Valid postcondition for “v=0;” is v=0 (no 
matter what the precondition is)
– Or, if precondition for “v=v+1;” is v=5, 
then a valid postcondition is v=6

• If precondition for “v=v+1;” is w=100, 
then a valid postcondition is w=100
– Assuming v and w do not alias
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Loop Invariant
• An assertion that is true at entrance to the loop, on 

any path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body

• Example: Factorial function code
– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive
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Verifying Invariant Correctness
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int i, t;         /* n>=1 */
i = 1;            /* n>=1 && i==1 */
t = 1;            /* n>=1 && i==1 && t==1 */
while (i <= n) {

/* 1<=i && i<=n && t>=1   <-- loop invariant */
t *= i;         /* 1<=i && i<=n && t>=1 */
i++;            /* 2<=i && i<=n+1 && t>=1 */

}                  /* i>n && t>=1 */
return t;

}
• Easy if we examine each step:

– Function’s precondition implies invariant at function body start
– Invariant at end of function body implies function’s postcondition
– If each statement matches invariant immediately before and 

after it, everything’s OK
• That leaves the loop invariant…
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Verifying the Loop Invariant
• Loop invariant: 1<=i && i<=n && t>=1
• Prove it is true at start of first loop iteration

– Follows from: 
» n=1 ∧ i=1 ∧ t=1 ? 1=i=n ∧ t=1
» if i=1, then certainly i=1 

• Prove that if it holds at start of any loop iteration, 
then it holds at start of next iteration (if there’s one)
– True, since invariant at end of loop body 2=i=n+1 ∧ t=1 
and loop termination condition i=n implies invariant at 
start of loop body 1=i=n ∧ t=1

• Follows by induction on number of iterations that loop 
invariant is always true on entrance to loop body
– Thus, fact() will always make postcondition true, as 
precondition is established by its caller
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Another Example: Recursion
• /* Requires: n >= 1 */
int fact(int n) {

int t;
if (n == 1)

return 1;
t = fact(n-1);
t *= n;
return t;

}

• Do you see how to prove that this code 
always outputs a positive integer?
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Analysis
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int t;
if (n == 1)

return 1;         /* n>=2 */
t = fact(n-1);       /* t>=0 */
t *= n;               /* t>=0 */
return t;

}

• Before recursive call to fact(), we know:
–n=1 (by precondition),  n?1 (since if stmt didn’t 
follow then branch), and n is an integer

– Follows that n=2, or n-1=1 (means precondition 
is met when making recursive call)

• Can conclude that fact(n-1) return value is 
positive from postcondition for fact()
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Function Post-/Pre-Conditions
• Any time we see a function call, we have 
to verify that its precondition will be met
– Then we can conclude its postcondition
holds and use this fact in our reasoning

• Annotating every function with pre- and 
post-conditions enables modular reasoning
– Can verify function f() by looking only its 
code and the annotations on every function 
f() calls

» Can ignore code of all other functions and 
functions called transitively

– Makes reasoning about f() an almost 
purely local activity
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Documentation
• Pre-/post-conditions serve as useful 
documentation
– To invoke Bob’s code, Alice only has to look 
at pre- and post-conditions – she doesn’t 
need to look at or understand his code

• Useful way to coordinate activity between 
multiple programmers:
– Each module assigned to one programmer, 
and pre-/post-conditions are a contract 
between caller and callee

– Alice and Bob can negotiate the interface 
(and responsibilities) between their code at 
design time
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Avoiding Security Holes
• To avoid security holes (or program crashes)

– Some implicit requirements code must meet
» Must not divide by zero, make out-of-bounds 
memory accesses, or deference null ptrs, …

• We can try to prove that code meets these 
requirements using same style of reasoning
– Ex: when a pointer is dereferenced, there is 
an implicit precondition that pointer is non-null 
and in-bounds
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Proving Array Accesses are in-bounds
• /* Requires: a != NULL and a[] holds n elements */

int sum(int a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)

/* Loop invariant: 0 <= i < n */
total += a[i];

return total;
}

• Loop invariant true at entrance to first iteration
– First iteration ensures i=0

• It is true at entrance to subsequent iterations
– Loop termination condition ensures i<n, and i only 
increases

• So array access a[i] is within bounds
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Buffer Overruns
• Proving absence of buffer overruns might 
be much more difficult
– Depends on how code is structured

• Instead of structuring your code so that 
it is hard to provide a proof of no buffer 
overruns, restructure it to make absence 
of buffer overruns more evident

• Lots of research into automated theorem 
provers to try to mathematically prove 
validity of alleged pre-/post-conditions
– Or to help infer such invariants
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Pre-/Post-Condition Summary
• Looks tedious, but gets easier over time

– With practice you can avoid writing down 
detailed invariants before every statement

» Think about data structures and code in terms 
of invariants first, then write the code

– Usually can avoid formal notation, omit obvious 
parts, and only write down important ones

» Usually writing down pre-/post-conditions and 
loop invariant for every loop is enough

• Reasoning about code takes time and energy
– Worth it for highly secure code
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Defensive Programming
• Like defensive driving, but for code: 

– Avoid depending on others, so that if they do something 
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is 
given invalid or unexpected inputs:
– Shouldn’t crash, cause undesirable side-effects, or 
produce dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave
• General strategy

– Assume attacker controls module’s inputs, make sure 
nothing terrible happens
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Defensive Programming
• Write module M to provide functionality 
to a single client
– M should provide useful responses if client 
provides valid inputs

– If client provides an invalid input, then M
is no longer under any obligation to provide 
useful output

» M must still protect itself (and rest of 
system) from being subverted by malicious 
inputs
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Very Simple Example
• char charAt(char *str, int index) {

return str[index];
}

• Function is too fragile!
–charAt(NULL, any) will cause a crash
–charAt(s, i) causes a buffer overrun if i is 
out-of-bounds (too small or large) for s

• Neither can be easily fixed without changing 
function’s interface
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Another Simple Example with Many Flaws
• char *double(char *str) {

size_t len = strlen(str);
char *p = malloc(2*len+1);
strcpy(p, str);
strcpy(p+len, str);
return p;

}
• double(NULL) will cause a crash

– Fix: test if str is a null ptr, and if so, return NULL
• Return value of malloc() is not checked

– If out-of-memory, malloc() will return null ptr and 
call to strcpy() will cause program crash

– Fix: test return value of malloc()
• If str is very long, then expression 2*len+1 will 

overflow, potentially causing a buffer overrun
– 231 byte input str on 32-bit machine will have 1 byte 
allocated, and strcpy will immediately trigger a 
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Trickier Example: Java Sort Routine
• Accepts array of objects that implements 
Comparable interface and sorts them
– Each object implements compareTo() method, and 
x.compareTo(y) must return a negative, zero, or 
positive integer, depending on whether x is less than, 
equal to, or greater than y

• Implementing a defensive sort routine is actually 
fairly tricky, because a malicious client could supply 
objects whose compareTo() method behaves 
unexpectedly
– Calling x.compareTo(y) twice might yield two 
different results (if x or y are malicious)

– Or, consider: x.compareTo(y) == 1, 
y.compareTo(z) == 1, and z.compareTo(x) == 1

• Sort routine might go into an infinite loop or worse
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Some General Advice
• 1. Check for error conditions

– Always check return values of all calls 
(assuming this is how they indicate errors)

– In languages with exceptions, can locally 
handle it or propagate (expose) to caller

– Check error paths very carefully
» Often poorly tested, so they often contain 
memory leaks and other bugs

• What if you detect an error condition?
– For expected errors, try to recover
– Harder to recover from unexpected errors
– Always safe to abort processing and 
terminate if an error condition is signaled 
(fail-stop behavior)


