
Page 1

CS 194-1 (CS 161)
Computer Security

Lecture 15

Software security
(defensive programming)

October 23, 2006
Prof. Anthony D. Joseph

http://cs161.org/

Lec 15. 210/23/06 Joseph CS161 ©UCB Fall 2006

Review: Defensive Programming
• Like defensive driving, but for code:

– Avoid depending on others, so that if they do something
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is
given invalid or unexpected inputs:
– Shouldn’t crash, cause undesirable side-effects, or
produce dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave
• General strategy

– Assume attacker controls module’s inputs, make sure
nothing terrible happens

Lec 15. 310/23/06 Joseph CS161 ©UCB Fall 2006

Goals for Today
• Defensive programming techniques to avoid
security holes when writing code
– Several good practices
– Lots of overlap with software engineering and
general software quality, but security places
heavier demands

• Isolation
– Software techniques for keeping suspect
programs from affecting other apps or the OS

» Separate program modules
» System call interposition
» Virtual Machines

Lec 15. 410/23/06 Joseph CS161 ©UCB Fall 2006

Some General Advice
• 1. Check for error conditions

– Check rv’s, error paths, exception handling
– Always safe to use fail-stop behavior

• 2. Validate All Inputs
– Sanity-check all inputs from rest of program
– Treat external inputs (could be from
adversary) with particular caution

– Check that the input looks reasonable
– Be conservative

» Better to limit inputs to expected values
(might cause some loss of functionality) than
to liberally allow all (might permit unexpected
security holes)

Lec 15. 510/23/06 Joseph CS161 ©UCB Fall 2006

What’s Wrong with this Code?
• char *username = getenv("USER");

char *buf = malloc(strlen(username)+6);
sprintf(buf, "mail %s", username);
FILE *f = popen(buf, "r");
fprintf(f, "Hi.\n");
fclose(f);

• Answer: If attacker controls USER environment
variable, then could arrange for its value to be
something like “adj; /bin/rm -rf $HOME”
–popen() passes its input to shell for execution,
and shell will execute command “mail adj”
followed by “/bin/rm -rf $HOME”

• Solution: validate that username looks reasonable
– If attacker can control other env vars (e.g.,
PATH), then could cause wrong mail command to
be invoked ? have to validate whole environment!

Lec 15. 610/23/06 Joseph CS161 ©UCB Fall 2006

Advice: 3. Whitelist, Don’t Blacklist
• Common mistake:

– When validating input from an untrusted
source, trying to enumerate bad inputs and
block them

– Don’t do that! Why?
– Known as blacklisting (analogous to default-
allow policy)

– Can overlook some patterns of dangerous
inputs

• Instead, use whitelist of known-good
types of inputs, and block anything else
– Default-deny policy (much safer)

Page 2

Lec 15. 710/23/06 Joseph CS161 ©UCB Fall 2006

Whitelisting Example
• Check a username using a regular expression:

–[a-z][a-z0-9]*
– char *validate_username(char *u) {

char *p;
if (!u || *u < 'a' || *u > 'z')

die();
for (p=u+1; *p; p++)

if ((*p < '0' || *p > '9') &&
(*p < 'a' || *p > 'z'))
die();

return u;
}

• Use with appropriate error-checking before
using a user-supplied username

Lec 15. 810/23/06 Joseph CS161 ©UCB Fall 2006

More Advice
• 4. Don’t crash or enter infinite loops, Don’t
corrupt memory
– Regardless of received inputs – NO abnormal
termination, infinite loops, internal state
corruption, control flow hijacks

– Explicitly validate all inputs and avoid
memory leaks

– Defend against DoS attacks:
» Attacker supplies inputs that lead to worst-
case performance (hashtable with O(1)
expected, but O(n) worst case lookup)

Lec 15. 910/23/06 Joseph CS161 ©UCB Fall 2006

More Advice
• 5. Beware of integer overflow

– Integer overflow often violates
programmer’s mental model and leads to
unexpected (undesired) behavior

• 6. Check exception-safety of the code
– Explicitly (programmer) thrown and
implicitly (platform) thrown exceptions

– Verify that your code doesn’t throw
runtime exceptions (null ptr deref, div 0,…)

– Less restrictively, check that all such
exceptions are handled and will propagate
across module boundaries

Lec 15. 1010/23/06 Joseph CS161 ©UCB Fall 2006

Famous Example: Ariane 5
• Ariane 4 flight control sw written in Ada

– Same software reused for more powerful Ariane 5
• Ariane 5 blew up shortly after first launch

– Cause: uncaught integer overflow exception caused
software to terminate abruptly…

• 16-bit reg: flight trajectory’s horizontal velocity
– Ariane 4 – verified range of physically possible
flight trajectories could not overflow variable, so
no need for exception handler…

• Ariane 5’s rocket engine was more powerful,
causing larger horizontal velocity to be stored
into register triggering overflow…
– Losses of around $500 million

Lec 15. 1110/23/06 Joseph CS161 ©UCB Fall 2006

Multiple Clients
• Module M supports multiple clients

– Must defend itself against malicious clients
– Isolate malicious clients from each other

• M may in turn invoke other utility modules
– Same requirements apply…

• Exception: M computes a pure function (no
internal state or I/O)
– One client can’t disrupt another or corrupt
M’s state

– Thus, functional programming simplifies
defensive programming task

Lec 15. 1210/23/06 Joseph CS161 ©UCB Fall 2006

Pre-Condition Choices
• Use precondition and leave it to caller to
ensure it is true

• Or, explicitly check for ourselves that
condition holds (and abort if it doesn’t)

• How should we decide between these two
strategies (for externally invoked fcns)?
– Use documented preconditions to express
intended contract

– Use explicit checking for anything that
could corrupt our internal state, cause us
to crash, or disrupt other clients

• Don’t need to worry as much about
internal helper functions

Page 3

Lec 15. 1310/23/06 Joseph CS161 ©UCB Fall 2006

Security Choices for Languages
• Pick tools that you know well

– Many security bugs caused by insufficient familiarity
with obscure corner cases in language, libraries, or
programming env.

– Read and understand formal language spec
• Pick a prog. platform designed for safety

– >50% of security holes in C code related to absence of
bounds-checking in C

– Choose strong type checking and automatic: array/ptr
bounds-checking, memory mgmt, and uninitialized
variables

– Assembly language is a poor choice (so easy to make
devastating mistakes)

» Use only when absolutely necessary (like C and C++?)
– Type-safe languages (Java, C#, Ada, ML) have many
security advantages

Lec 15. 1410/23/06 Joseph CS161 ©UCB Fall 2006

Dealing with Insecure Languages
• Can’t always choose the language based on
security…
– Other considerations may dominate
– Or, may be forced to maintain legacy code

• Need to be extra careful
– Avoid obscure corners of language
– If no automatic bounds-checking, consider
inserting manual bounds-checks

– Consider writing code so you can prove that
out-of-bounds accesses are impossible

Lec 15. 1510/23/06 Joseph CS161 ©UCB Fall 2006

C-Specific Advice
• Avoid buffer overruns

– Prove no mem access (array, ptr deref,
structure) can overflow bounds

– Make all preconditions, loop invariants, and
object invariants for this explicit in code

• Avoid undefined behavior
– Used frequently in the C standard

» Many primitives have implicit preconditions
»a[i] is undefined if i is out of bounds

– Can be used to hijack program control
• Get familiar with the C standard

– Textbooks, man pages, and informal guides
occasionally get things wrong

Lec 15. 1610/23/06 Joseph CS161 ©UCB Fall 2006

Administrivia
• Journal due by midnight tonight

• Homework #2 due Friday October 27th

• Midterm #2 is November 6th in class

• Project #2 will be posted later this week

• No office hours for Prof. Joseph next
week: 10/30 and 11/2

Lec 15. 1710/23/06 Joseph CS161 ©UCB Fall 2006

Security is an Ongoing Process
• Integrate into all phases of system
development lifecycle
– Requirements analysis, Design
– Implementation, Testing
– Quality assurance, Bug fixing
– Maintenance

• Steps:
– Test code thoroughly
– Use code reviews to cross-check each
other

– Evaluate the cause of all bugs found

Lec 15. 1810/23/06 Joseph CS161 ©UCB Fall 2006

Pre-Deployment: Test Code Thoroughly
• Testing can help eliminate (security) bugs
• Test corner cases: long/unusual/8-bit strings

– Strings containing format specifiers (%s) and
newlines, and other unexpected values

• Analyze manuals and documentation
– If manual says input should be of a particular
form, construct counter test cases

• Use unit tests to stress boundary conditions
– 0, 1, -1, 231-1, -231 are fun to try
– Try inputs with unusual pointer aliasing or
pointing to overlapping memory regions

• Automate tests and run them nightly

Page 4

Lec 15. 1910/23/06 Joseph CS161 ©UCB Fall 2006

More Process
• Use code reviews to cross-check each
other
– We’re all fallible – use another perspective
to find defects we’ve missed

– Easy to make implicit assumptions without
realizing it – original programmer will make
same erroneous assumption when reviewing
their own code

• Code reviews keep us honest and
motivated
– Don’t want to be embarrassed in front of
peers

Lec 15. 2010/23/06 Joseph CS161 ©UCB Fall 2006

More Process
• Evaluate the cause of all bugs found

– What to do when you find a security bug?
– Fix it first, then follow several steps

• 1. Generate regression test that triggers
the security hole and add to test suite

• 2. Check whether there are similar bugs
elsewhere in the codebase
– Document pitfall or coding pattern that
causes this bug, so others can learn from it

• 3. Consider how to prevent similar bugs
from being introduced in the future

Lec 15. 2110/23/06 Joseph CS161 ©UCB Fall 2006

Security Bugs
• Have to fix the root cause that creates
conditions for security bugs to be introduced

• Periodically investigate security bug root causes
– Are there adequate resources for security?
– Is security adequately prioritized?
– Was the design well-chosen?
– Are you using the right tools for the job?
– Are deadlines too tight?
– Does it indicate some weakness in the process?
– Do engineers need more training on security?
– Should you be doing more testing, more code
reviews, something else?

Lec 15. 2210/23/06 Joseph CS161 ©UCB Fall 2006

Isolation
• An isolated program can’t affect other
programs on the system
– Isolation is related to topics we’ve seen
before (access control)

» Access control enforces some security
policy (a means to an end), whereas
isolation is a security goal (the end itself)

• Related to VM and memory protection
– Virtual memory only isolates memory
between processes – doesn’t prevent other
kinds of influence (opening an IPC pipe
from one process to another)

• Want to isolate against all influences, so
memory protection alone is not enough

Lec 15. 2310/23/06 Joseph CS161 ©UCB Fall 2006

Isolation Examples
• You find a cool program that draws dancing
hamsters on the screen
– You want to download and try it but don’t
know if you can trust the developer

• Want to display an emailed MS Word file
– Don’t want my PC infected with a macro virus

• These are sandboxing problems
– Run software in an isolated env. – can’t harm
rest of the machine even if it is malicious

• Designing a complicated software application
– Following principle of least privilege,
decompose it into multiple isolated pieces

Lec 15. 2410/23/06 Joseph CS161 ©UCB Fall 2006

Decomposing Software for Security
• Replacing a popular mail application: sendmail
(written by EECS staffer Eric Allman)
– Large (100K LoC), monolithic, runs as root, and
plagued by security problems

• qmail secure mailer (2nd most popular mailer)
– Written by Dan Bernstein
– He offered a $500 prize in 1997 to first
person to find a serious security hole

» The $500 still remains unclaimed…

• Let’s see why…

Page 5

Lec 15. 2510/23/06 Joseph CS161 ©UCB Fall 2006

What Does a Mail Daemon Do?
• Receives incoming email via port 25

– Has to listen for connections to port 25
• Receives email submissions from other
programs on this host
– Has to be prepared to be invoked by other
programs who want to submit mail for
transmission elsewhere

• When it receives an email message
– Queues the message, determines where to
route it (locally delivery to a user or
forwarded to another host)

Lec 15. 2610/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Lec 15. 2710/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Listens connections on port 25, receives
email msg, calls qmail-queue to enqueue
msg, and writes log file
Runs with permissions of its own user
account (qmaild)

Lec 15. 2810/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Executed by local programs to submit email
msgs for transmission
Accepts msgs on stdin and calls qmail-queue
to enqueue them
Runs with invoking user’s permissions

Lec 15. 2910/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Reads msg from its input and appends it to
mail queue
Queue directory owned by qmailq account
Program is setuid program, so executes
with qmailq permissions

Lec 15. 3010/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Runs in background, reads new msgs from
the queue and routes them to a local user
(qmail-lspawn) or to a remote host
(qmail-rspawn)
Runs with same permissions as qmail-
queue (qmailq)

Page 6

Lec 15. 3110/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Accepts email msgs on its input,
looks up target user ID, becomes that
user (giving up all other permissions),
and then executes qmail-local
Program is setuid-root so that it can
become the target user

Lec 15. 3210/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Delivers email msg by appending it to
user’s mailbox file (or passing it to a
filter in user’s ~/.forward file)
Runs with receiving user’s permissions

Lec 15. 3310/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Accepts email msg as input, determines
remote host, and invokes qmail-remote to
transmit it
Program is setuid to its own userid (qmailr)

Lec 15. 3410/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

Accepts email msg as input, opens connection to
port 25 on remote host to deliver msg
Runs with invoking user’s permissions (qmailr)

Lec 15. 3510/23/06 Joseph CS161 ©UCB Fall 2006

Qmail Internals

qmail-start program starts up all
the long-running processes, with
the appropriate userids

Lec 15. 3610/23/06 Joseph CS161 ©UCB Fall 2006

Why Use So Many Programs?
• Minimizes amount of code running as root!

– Only qmail-start and qmail-lspawn
» Principle of least privilege (vs sendmail)

• Reduces amount of security-critical code
– Only local users can invoke qmail-inject

• Separates logically different functions
into mutually distrusting programs
– No program trusts data from the others
– Security holes do not give root access*
– OS prevents tampering with executable

• Each program is extremely simple
–qmail-send is 1600 loCC (others < 800)

Page 7

Lec 15. 3710/23/06 Joseph CS161 ©UCB Fall 2006

Isolation and Controlled Sharing
• Pure isolation is usually too strict
• Isolation is analogous to the deny-all
starting point of a default-deny policy

• Controlled sharing allows limited escape
routes out of the sandbox
– Useful interaction without exposure to
attack?

–qmail: controlled sharing between qmail
programs through explicit communication
channels

BREAK

Lec 15. 3910/23/06 Joseph CS161 ©UCB Fall 2006

Example Decomposition for Security
• Design web service to convert files from one
format to another (MP3 to OGG)
– Accepts port 80 connections, translates file
into new format, and sends back results

• Break into two pieces:
– Master process receives file, invokes slave
process with data, and returns slave’s output

– Slave process takes in byte array, transforms
MP3 into OGG format, and outputs OGG data

» Deterministic function of its input – no
permissions needed at all – can be sandboxed

» Buggy MP3-to-OGG code can only return
incorrect OGG files – can’t harm our machine

Lec 15. 4010/23/06 Joseph CS161 ©UCB Fall 2006

Web Browser Example
• Web browser needs to decompress a
received file
– Decompression program is complex and
you’re not 100% sure you trust it

• How do you structure your application to
minimize trust in the decompressor?
– 2002: discovered that zlib libraries from
2/98 – 3/02 were vulnerable to code
injection exploit

• Unix and Windows don’t make it very easy
to get the necessary kind of isolation
– Many apps where sandboxing and isolation
would be very useful

Lec 15. 4110/23/06 Joseph CS161 ©UCB Fall 2006

Access Control
• Secure sandbox must be inescapable

– How to enforce isolation guarantees?
• Easiest solution – create new user account

– Install and run sandboxed program in account
– Uses OS’s access control mechanisms

• Problem: OS is focused on protecting file access
– Program can create connections or run servers*

» “default allow” policy for network connections…
– Many files are world-readable (“default allow”)
– Pgm can attack other machines, send spam,…

» Machines behind my FW are vulnerable!
» Might steal /etc/passwd file and email it

Lec 15. 4210/23/06 Joseph CS161 ©UCB Fall 2006

Qmail’s Strategy
• qmail uses OS to build its sandbox

– Its isolation guarantees are actually
slightly weaker than mentioned before…

• Intruder who gains control of a qmail
program isn’t entirely isolated
– Can attack other hosts on same intranet
– A limitation of qmail ’s isolation strategy

• Difficult to do better while remaining
portable

Page 8

Lec 15. 4310/23/06 Joseph CS161 ©UCB Fall 2006

System Call Interposition
• Interposition on the system call interface

– Place a sandbox enforcer between
sandboxed application and OS

• Mediates all system call requests:
– App’s syscalls are re-directed to enforcer
– Enforcer approves or denies syscall request
based on the arguments

» Extends OS’s access control policy without
modifying the OS itself

• Example Policy – MP3-to-OGG
– Pure computation, nothing else
– Deny all system calls except receiving input
(fd0) and producing output (fd1)

Lec 15. 4410/23/06 Joseph CS161 ©UCB Fall 2006

Another Example Policy
• Adobe Acrobat PDF viewer on Linux:

– Allow connect() to port 6000 on localhost to
open X windows

– Allow open() or manipulate of files under
~/.acrobat for its preferences

– Allow any calls to read() or write() since
they’re only useful on open file descriptors

• But, many other items needed (file to view?)
– Loads dynamic libraries (open() and mmap())
– Uses /usr/lib/locale to determine language
– Uses signals and threads (need to apply syscall
interposition to spawned processes…)

• Sandboxing policy is surprisingly complex!!

Lec 15. 4510/23/06 Joseph CS161 ©UCB Fall 2006

Subtle Interposition Pitfalls
• Very easy risk of TOCTTOU vulnerabilities
• Examples:

–open() syscall’s first arg is ptr to filename and
malicious program could change it after
enforcer’s check but before OS executes
open()

» Solution: OS copies filename into kernel memory
then to enforcer

– Calls like open(“foo”) rely on current directory
and, in a multi-threaded / processor
environment, program could change working
directory

» Solution: accurately maintain shadow state

Lec 15. 4610/23/06 Joseph CS161 ©UCB Fall 2006

Shadow State
• OS maintains state for each running process
(e.g., current working dir)

• For security, enforcer maintains its own
copy of state
– If the copies get out of sync, enforcer may
allow prohibited system calls to proceed

– Hard to interpose a reference monitor on an
interface where a call’s meaning depends on
state not exposed in call’s args

• Alternative: Virtualize and emulate OS
– Sandboxed application thinks it is running on
a real OS, but actually running on enforcer’s
emulated OS

Lec 15. 4710/23/06 Joseph CS161 ©UCB Fall 2006

System Call Interposition Summary
• Lots of research into syscall interposition

– I’ve omitted many interesting details
• For more information, read about tools
such as Systrace, Janus, and Ostia

• Question for thought:
– How could you use system call interposition
to make qmail more bullet-proof?

Lec 15. 4810/23/06 Joseph CS161 ©UCB Fall 2006

Physical Isolation
• Run sandboxed app on a physically isolated
machine
– When done, reboot and reformat machine
and reuse it for another sandboxed app

• A good way to achieve isolation
– Can be pretty confident that nothing can
escape the sandbox (especially if machine
doesn’t have any network interfaces)

– But, very expensive!
• Approach used in military domains

– Need access to Internet and SIPRNET
– Give each analyst two separate machines
– Could we use virtual machines instead?

Page 9

Lec 15. 4910/23/06 Joseph CS161 ©UCB Fall 2006

Virtual Machines
• If real machines are too expensive, use a
virtual machine instead

• A virtual machine is a software app that
emulates a physically separate machine
– Examples: VMWare, Virtual PC, QEmu, Bochs

• How does a virtual machine work?
• Consider an x86 emulator program:

– Takes in an x86 binary and interprets the
instructions entirely in software

– Maintains (in SW) the emulated state of an
x86 CPU and emulates behavior of physical
devices

Lec 15. 5010/23/06 Joseph CS161 ©UCB Fall 2006

Virtual Machines Internals
• x86 program running on VMWare on Linux

– VMWare creates 100MB file on Linux FS to
store emulated 100MB hard drive

– Translates program’s reads/writes into Linux
read/write syscalls to 100MB file

» Same for writes to screen
– Big slowdown, but tricks eliminate most overhead

• One physical machine can simulate dozens
» Benefits of physical isolation without HW
» “Bad” programs unable to change long-term state

• Virtualization is a powerful technique
– Like VM and syscall interposition, virtual
machines work by virtualizing the HW interface

Lec 15. 5110/23/06 Joseph CS161 ©UCB Fall 2006

Interpreted Code
• Virtual machines illustrate how interpreted
languages can be used for sandboxing
– Interpreter is a loop repeatedly decoding
and executing a sequence of instructions

• Simplest example: combinatorial circuits
– Can implement any stateless deterministic
computation as a combinatorial circuit

– Given boolean function f:{0,1}n? {0,1}, find
a combinatorial circuit that computes f

» f is deterministic and side-effect-free
» A network of AND/OR/NOT gates with n
inputs, 1 output, and no cycles or memory

– Easy to sandbox – evaluate circuit in sw
Lec 15. 5210/23/06 Joseph CS161 ©UCB Fall 2006

Interpreted Code Example
• You write an extensible spam-filtering app

– Your friend Sam creates a program that takes
an email as input and classifies it either as
“spam” or “not spam”

– If you don’t trust Sam, you can’t run his
program – might be a Trojan horse!

• Express Sam’s program as boolean function f
– Takes an email (a bit-string) as input and
produces a boolean output

• Solution: Sam expresses his program as a
combinatorial circuit
– Malicious filter can’t leak email contents
– Worst case: causes wrong filtering decisions

Lec 15. 5310/23/06 Joseph CS161 ©UCB Fall 2006

Boolean Circuits Interpreter
• Use simple NAND gates to express
arbitrary combinatorial logic

• Emulate circuit using very simple CPU:
– Store each value in circuit in a register
– Each instruction reads inputs from two
specified registers, computes their
NAND, and stores result to third register
»NAND r1037, r27, r45
computes NAND of bit in register r27 and
bit in r45, storing result in r1037

– Interpreter only takes a few lines of code
• But, circuits aren’t very friendly/flexible

– Apply same principles to an interpreter
Lec 15. 5410/23/06 Joseph CS161 ©UCB Fall 2006

Secure Interpreter
• Design language so it is impossible to
express operations that would violate
sandboxing policy
– Ex: no way to do I/O or R/W outside
program ’s address space

• Example: Berkeley Packet Filter
– Interpreted language for expressing
packet filters that can be downloaded into
the kernel

– Language prevents writers from expressing
harmful programs

– Ex: can’t write non-terminating loops
because no backward jumps are allowed

Page 10

Lec 15. 5510/23/06 Joseph CS161 ©UCB Fall 2006

Summary
• Defensive programming won’t prevent bugs or
security problems
– But, it can help contain the damage

• Testing the uncommon is critical
• Several programming techniques for avoiding
or handling problems

• Use isolation techniques for untrusted code
– Module decomposition
– System call interposition
– Virtual machines and secure interpreters

