CS 194-1 (CS 161)
Computer Security

Lecture 15

Software security
(defensive programming)

October 23, 2006
Prof. Anthony D. Joseph
http://cs161.org/

Review: Defensive Programming
« Like defensive driving, but for code:
- Avoid depending on others, so that if they do something
unexpected, you won't crash - survive unexpected behavior
« Software engineering focuses on functionality:
- Given correct inputs, code produces useful/correct outputs
« Security cares about what happens when program is
given invalid or unexpected inputs:

- Shouldn’t crash, cause undesirable side-effects, or
produce dangerous outputs for bad inputs

« Defensive programming
- Apply idea at every interface or security perimeter
» So each module remains robust even if all others misbehave

* General strategy
- Assume attacker controls module’s inputs, make sure
nothing terrible happens

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.2

Goals for Today

« Defensive programming techniques to avoid
security holes when writing code
- Several good practices
- Lots of overlap with software engineering and
general software quality, but security places
heavier demands
 Isolation
- Software techniques for keeping suspect
programs from affecting other apps or the OS
» Separate program modules
» System call interposition
» Virtual Machines

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.3

Some General Advice
e 1. Check for error conditions
- Check rv’s, error paths, exception handling
- Always safe to use fail-stop behavior
e 2. Validate All Inputs
- Sanity-check all inputs from rest of program

- Treat external inputs (could be from
adversary) with particular caution

- Check that the input looks reasonable

- Be conservative
» Better to limit inputs to expected values
(might cause some loss of functionality) than
to liberally allow all (might permit unexpected
security holes)

Lec 15.4

10/23/06 Joseph CS161 ©UCB Fall 2006

What's Wrong with this Code?

char *username = getenv("USER');
char *buf = malloc(strlen(usernane)+6);

sprintf(buf, "mail %", usernane);
FILE *f = popen(buf, "r");
fprintf(f, "H.\n");
fclose(f);
« Answer: If attacker controls USER environment

variable, then could arrange for its value to be
something like “adj ; /bin/rm-rf $HOME’
—popen() passes its input to shell for execution,
and shell will execute command “nai | adj ”
followed by “/bin/rm-rf $HOVE”
< Solution: validate that username looks reasonable
- If attacker can control other envvars (e.g.,

PATH), then could cause wrong rmai | command to
be invoked ? have to validate whole environment!

Lec 15.5

10/23/06 Joseph CS161 ©UCB Fall 2006

Advice: 3. Whitelist, Don't Blacklist

e Common mistake:

- When validating input from an untrusted
source, trying to enumerate bad inputs and
block them

- Don't do that! Why?

- Known as blacklisting (analogous to default-
allow policy)

- Can overlook some patterns of dangerous
inputs
 Instead, use whitelist of known-good
types of inputs, and block anything else
- Default-deny policy (much safer)

Lec 15.6

10/23/06 Joseph CS161 ©UCB Fall 2006

Page 1

Whitelisting Example

« Check a username using a regular expression:
-[a-z][a-z0-9]*
—char *validate_usernanme(char *u) {

char *p;
if (lul| *u<'a || *u>"'z")
die();
for (p=u+l; *p; p++)
if (*p<'0 || *p>'9) &
(*p<ra || *p>"2"))
die();
return u;

* Use with appropriate error-checking before
using a user-supplied username

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.7

More Advice

« 4. Don't crash or enter infinite loops, Don't

corrupt memory

- Regardless of received inputs - NO abnormal
termination, infinite loops, internal state
corruption, control flow hijacks

- Explicitly validate all inputs and avoid
memory leaks

- Defend against DoS attacks:

» Attacker supplies inputs that lead to worst-

case performance (hashtable with O(1)
expected, but O(n) worst case lookup)

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.8

More Advice

* 5. Beware of integer overflow

- Integer overflow often violates
programmer’s mental model and leads to
unexpected (undesired) behavior

e 6. Check exception-safety of the code
- Explicitly (programmer) thrown and
implicitly (platform) thrown exceptions

- Verify that your code doesn't throw
runtime exceptions (null ptr deref, div 0,..)

- Less restrictively, check that all such
exceptions are handled and will propagate
across module boundaries

10/23/06

Joseph CS161 ©UCB Fall 2006 Lec 15.9

Famous Example: Ariane 5

* Ariane 4 flight control sw written in Ada

- Same software reused for more powerful Ariane 5

« Ariane 5 blew up shortly after first launch

- Cause: uncaught integer overflow exception caused
software to terminate abruptly...

* 16-bit reg: flight trajectory’s horizontal velocity

- Ariane 4 - verified range of physically possible
flight trajectories could not overflow variable, so
no need for exception handler...

* Ariane 5's rocket engine was more powerful,

causing larger horizontal velocity to be stored
into register triggering overflow...
- Losses of around $500 million

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.10

Multiple Clients

* Module M supports multiple clients
- Must defend itself against malicious clients
- Isolate malicious clients from each other

* M may in turn invoke other utility modules
- Same requirements apply...

« Exception: M computes a pure function (no
internal state or 1/0)
- One client can't disrupt another or corrupt
M’s state
- Thus, functional programming simplifies
defensive programming task

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.11

Pre-Condition Choices

* Use precondition and leave it to caller to
ensure it is true

« Or, explicitly check for ourselves that
condition holds (and abort if it doesn’t)

* How should we decide between these two
strategies (for externally invoked fcns)?

- Use documented preconditions to express
intended contract

- Use explicit checking for anything that
could corrupt our internal state, cause us
to crash, or disrupt other clients

* Don't need to worry as much about
internal helper functions

10/23/06 Joseph CS161 @UCB Fall 2006 Lec 15.12

Page 2

Security Choices for Languages
« Pick tools that you know well
- Many security bugs caused by insufficient familiarity
with obscure corner cases in language, libraries, or
programming env.
- Read and understand formal language spec
* Pick a prog. platform designed for safety
- >50% of security holes in C code related to absence of
bounds-checking in C
- Choose strong type checking and automatic: array/ptr
bounds-checking, memory mgmt, and uninitialized
variables
- Assembly language is a poor choice (so easy to make
devastating mistakes)
» Use only when absolutely necessary (like C and C++?)
- Type-safe languages (Java, C#, Ada, ML) have many
security advantages

Joseph CS161 ©UCB Fall 2006

10/23/06 Lec 15.13

Dealing with Insecure Languages

e Can't always choose the language based on
security...

- Other considerations may dominate

-Or, may be forced to maintain legacy code
* Need to be extra careful

- Avoid obscure corners of language

- If no automatic bounds-checking, consider
inserting manual bounds-checks

- Consider writing code so you can prove that
out-of-bounds accesses are impossible

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.14

C-Specific Advice

« Avoid buffer overruns

- Prove no mem access (array, ptr deref,
structure) can overflow bounds

- Make all preconditions, loop invariants, and
object invariants for this explicit in code

» Avoid undefined behavior
- Used frequently in the C standard
»Many primitives have implicit preconditions
»a[i] is undefined if i is out of bounds
- Can be used to hijack program control
e Get familiar with the C standard

- Textbooks, man pages, and informal guides
occasionally get things wrong

Joseph CS161 ©UCB Fall 2006

10/23/06 Lec 15.15

Administrivia

e Journal due by midnight tonight

* Homework #2 due Friday October 27t

* Midterm #2 is November 6t in class

* Project #2 will be posted later this week

* No office hours for Prof. Joseph next
week: 10/30 and 11/2

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.16

Security is an Ongoing Process

* Integrate into all phases of system
development lifecycle

- Requirements analysis, Design
- Implementation, Testing
- Quality assurance, Bug fixing
- Maintenance

* Steps:
- Test code thoroughly

- Use code reviews to cross-check each
other

- Evaluate the cause of all bugs found

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.17

Pre-Deployment: Test Code Thoroughly

» Testing can help eliminate (security) bugs
e Test corner cases: long/unusual/8-bit strings
- Strings containing format specifiers (%s) and
newlines, and other unexpected values
e Analyze manuals and documentation
- If manual says input should be of a particular
form, construct counter test cases
e Use unit tests to stress boundary conditions
-0, 1, -1, 231-1, -231 are fun to try
- Try inputs with unusual pointer aliasing or
pointing to overlapping memory regions
e Automate tests and run them nightly

10/23/06 Joseph CS161 @UCB Fall 2006 Lec 15.18

Page 3

More Process

* Use code reviews to cross-check each
other

-We're all fallible - use another perspective
to find defects we've missed

- Easy to make implicit assumptions without
realizing it - original programmer will make
same erroneous assumption when reviewing
their own code

* Code reviews keep us honest and
motivated
- Don't want to be embarrassed in front of
peers
10/23/06

Joseph CS161 ©UCB Fall 2006 Lec 15.19

More Process

e Evaluate the cause of all bugs found
-What to do when you find a security bug?
- Fix it first, then follow several steps

* 1. Generate regression test that triggers
the security hole and add to test suite

e 2. Check whether there are similar bugs
elsewhere in the codebase

- Document pitfall or coding pattern that
causes this bug, so others can learn from it

« 3. Consider how to prevent similar bugs
from being introduced in the future
10/23/06

Joseph CS161 ©UCB Fall 2006 Lec 15.20

Security Bugs

* Have to fix the root cause that creates
conditions for security bugs to be introduced

« Periodically investigate security bug root causes
- Are there adequate resources for security?
- Is security adequately prioritized?
-Was the design well-chosen?
- Are you using the right tools for the job?
- Are deadlines too tight?
- Does it indicate some weakness in the process?

- Do engineers need more training on security?

- Should you be doing more testing, more code
reviews, something else?
10/23/06

Joseph CS161 ©UCB Fall 2006 Lec 15.21

Isolation

« An isolated program can't affect other
programs on the system

- Isolation is related to topics we've seen
before (access control)
» Access control enforces some security

policy (a means to an end), whereas
isolation is a security goal (the end itself)

e Related to VM and memory protection

- Virtual memory only isolates memory
between processes - doesn't prevent other
kinds of influence (opening an IPC pipe
from one process to another)

« Want to isolate against all influences, so
memory protection alone is not enough

Joseph CS161 ©UCB Fall 2006

10/23/06 Lec 15.22

Isolation Examples

* You find a cool program that draws dancing
hamsters on the screen

-You want to download and try it but don't
know if you can trust the developer
* Want to display an emailed MS Word file
- Don't want my PC infected with a macro virus
* These are sandboxing problems
- Run software in an isolated env. - can't harm
rest of the machine even if it is malicious
« Designing a complicated software application

- Following principle of least privilege,
decompose it into multiple isolated pieces

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.23

Decomposing Software for Security

» Replacing a popular mail application: sendmnai |
(written by EECS staffer Eric Allman)
-Large (100K LoC), monolithic, runs as root, and
plagued by security problems
e gmai | secure mailer (2" most popular mailer)
- Written by Dan Bernstein

- He offered a $500 prize in 1997 to first
person to find a serious security hole

» The $500 still remains unclaimed...
e Let's see why...

10/23/06 Joseph CS161 @UCB Fall 2006 Lec 15.24

Page 4

What Does a Mail Daemon Do?

* Receives incoming email via port 25
- Has to listen for connections to port 25

* Receives email submissions from other
programs on this host
- Has to be prepared to be invoked by other
programs who want to submit mail for
transmission elsewhere

* When it receives an email message

- Queues the message, determines where to
route it (locally delivery to a user or
forwarded to another host)

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.25

Qmail Internals

from ngteork.

W0 e 0 kol user

10/23/06

o incal waar

Joseph CS161 ©UCB Fall 2006 Lec 15.26
drom rptwark o ocal e drpm sk B ocal e
|
Listens connections on port 25, receives .
email msg, calls gnai | - queue to enqueue :
msg, and writes log file Executed by local programs to submit email
Runs with permissions of its own user msgs for transmission
account (qmai | d) Accepts msgs on stdin and calls gnai | - queue
to enqueue them
; 3 Runs with invoking user’s permissions
1 T 1
W e 1o kocal user o b 1 kol e
10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.27 10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.28

Qmail Internals

i raphasceh Froum gl e

Reads msg from its input and appends it to
mail queue

Queue directory owned by gnai | g account
Program is set ui d program, so executes
with gnai | g permissions

W e o local e

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.29

Qmail Internals

froom naptwgrk,

from incal waar

(gmai | - r spawn)

p— queue (gqnai | q)

Runs in background, reads new msgs from
the queue and routes them to a local user
(gmai | -1 spawn) or to a remote host

Runs with same permissions as qmai | -

10/23/06 Joseph CS161 ©UCB Fall 2006

Lec 15.30

Page 5

OQmail Internals

from netecrk.

o incal e

W T

Accepts email msgs on its input,
looks up target user 1D, becomes that
user (giving up all other permissions),
and then executes gnai | -1 ocal
Program is set ui d-r oot so that it can
become the target user

o kol user

Qmail Internals

from ngteork.

o il &

Delivers email msg by appending it to
user's mailbox file (or passing it to a
filter in user's ~/ . forward file)

Runs with receiving user’s permissions

0 e 0 kol user

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.31 10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.32
Qmail Internals Qmail Internals
Sroan natwsork, Froe ipcal e sreami natwcrk, Froem incal L
Accepts email msg as input, determines id e
remote host, and invokes qmai | -renot e to
transmit it
Program is setuid to its own userid (qmai | r) ':é?rctepztss :??;'m’gﬁ ?zsitnptl:)t’deol?ve;rs ;ggnection to
Runs with invoking user’s permissions (qnai | r)
pe— | 10 ol user p— | 10l usar
10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.33 10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.34
Qmail Internals Why Use So Many Programs?
e e s ot i e Minimizes amount of code running as root!
-Only gmai | -start and gnai | -1 spawn
I I » Principle of least privilege (vs sendnsi |)
2 * Reduces amount of security-critical code
il Il . S
ﬁhm:“.oﬁgi‘:ﬁn"nfﬁg',??Z,;t;;t: ‘f,f,ti - Only local users can invoke gmai | -i nj ect
the appropriate userids - Separates logically different functions
! ; into mutually distrusting programs
1w - No program trusts data from the others
. y - Security holes do not give root access*
A - OS prevents tampering with executable
o rerher | p o local e * Each program is extremely simple
—qmai | - send is 1600 loCC (others < 800)
10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.35 10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.36

Page 6

Isolation and Controlled Sharing

« Pure isolation is usually too strict

« Isolation is analogous to the deny-all
starting point of a default-deny policy

« Controlled sharing allows limited escape
routes out of the sandbox
- Useful interaction without exposure to
attack?
—qmai | : controlled sharing between gmail
programs through explicit communication
channels

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.37

BREAK

Example Decomposition for Security

* Design web service to convert files from one
format to another (MP3 to OGG)

- Accepts port 80 connections, translates file
into new format, and sends back results

* Break into two pieces:
- Master process receives file, invokes slave
process with data, and returns slave’s output

- Slave process takes in byte array, transforms
MP3 into OGG format, and outputs OGG data
» Deterministic function of its input - no
permissions needed at all - can be sandboxed

»Buggy MP3-to-OGG code can only return
incorrect OGG files - can't harm our machine

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.39

Web Browser Example

* Web browser needs to decompress a
received file

- Decompression program is complex and
you're not 100% sure you trust it

e How do you structure your application to
minimize trust in the decompressor?
-2002: discovered that zl i b libraries from

2/98 - 3/02 were vulnerable to code
injection exploit

« Unix and Windows don't make it very easy
to get the necessary kind of isolation

- Many apps where sandboxing and isolation
would be very useful

Joseph CS161 ©UCB Fall 2006 Lec 15.40

10/23/06

Access Control

* Secure sandbox must be inescapable
- How to enforce isolation guarantees?
« Easiest solution - create new user account
- Install and run sandboxed program in account
- Uses OS’s access control mechanisms
* Problem: OS is focused on protecting file access
- Program can create connections or run servers*
» “default allow” policy for network connections..
- Many files are world-readable (“default allow”)
-Pgm can attack other machines, send spam,..
» Machines behind my FW are vulnerable!
» Might steal /etc/passwd file and email it

Joseph CS161 ©UCB Fall 2006 Lec 15.41

10/23/06

Omail’'s Strategy

e qmai | uses OS to build its sandbox
- Its isolation guarantees are actually
slightly weaker than mentioned before...
¢ Intruder who gains control of a gmail
program isn’t entirely isolated
- Can attack other hosts on same intranet
- A limitation of gnai | 's isolation strategy
« Difficult to do better while remaining
portable

10/23/06 Joseph CS161 @UCB Fall 2006 Lec 15.42

Page 7

System Call Interposition
 Interposition on the system call interface
- Place a sandbox enforcer between
sandboxed application and OS
* Mediates all system call requests:
- App’s syscalls are re-directed to enforcer

- Enforcer approves or denies syscall request
based on the arguments

» Extends OS’s access control policy without
modifying the OS itself

» Example Policy - MP3-to-OGG
- Pure computation, nothing else

- Deny all system calls except receiving input
(fd0) and producing output (fd1)

Joseph CS161 ©UCB Fall 2006

10/23/06 Lec 15.43

Another Example Policy
« Adobe Acrobat PDF viewer on Linux:

- Allow connect () to port 6000 on localhost to
open X windows

- Allow open() or manipulate of files under
~/ . acrobat for its preferences

- Allow any calls to read() or wite() since
they’re only useful on open file descriptors

* But, many other items needed (file to view?)
- Loads dynamic libraries (open() and mmap())
-Uses /usr/lib/local e to determine language

- Uses signals and threads (need to apply syscall
interposition to spawned processes...)

» Sandboxing policy is surprisingly complex!!

10/23/06 Joseph CS161 ©UCB Fall 2006

Lec 15.44

Subtle Interposition Pitfalls

* Very easy risk of TOCTTOU vulnerabilities
* Examples:

—open() syscall’'s first arg is ptr to filename and
malicious program could change it after
enforcer’s check but before OS executes
open()

» Solution: OS copies filename into kernel memory
then to enforcer

- Calls like open(“fo00”) rely on current directory
and, in a multi-threaded / processor
environment, program could change working
directory

» Solution: accurately maintain shadow state

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.45

Shadow State

¢ OS maintains state for each running process
(e.g-, current working dir)

e For security, enforcer maintains its own
copy of state
- I the copies get out of sync, enforcer may
allow prohibited system calls to proceed
- Hard to interpose a reference monitor on an

interface where a call’s meaning depends on
state not exposed in call’s args

« Alternative: Virtualize and emulate OS

- Sandboxed application thinks it is running on
a real OS, but actually running on enforcer’s
emulated OS

Joseph CS161 ©UCB Fall 2006

10/23/06 Lec 15.46

System Call Interposition Summary

* Lots of research into syscall interposition
- I've omitted many interesting details

* For more information, read about tools
such as Systrace, Janus, and Ostia

¢ Question for thought:

- How could you use system call interposition
to make gnui | more bullet-proof?

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.47

Physical Isolation

* Run sandboxed app on a physically isolated
machine

-When done, reboot and reformat machine
and reuse it for another sandboxed app

« A good way to achieve isolation

- Can be pretty confident that nothing can
escape the sandbox (especially if machine
doesn’t have any network interfaces)

- But, very expensive!

« Approach used in military domains
- Need access to Internet and SIPRNET
- Give each analyst two separate machines
- Could we use virtual machines instead?

10/23/06 Joseph CS161 @UCB Fall 2006

Lec 15.48

Page 8

Virtual Machines

« If real machines are too expensive, use a
virtual machine instead

« A virtual machine is a software app that
emulates a physically separate machine
- Examples: VMWare, Virtual PC, QEmu, Bochs
* How does a virtual machine work?
* Consider an x86 emulator program:

- Takes in an x86 binary and interprets the
instructions entirely in software

- Maintains (in SW) the emulated state of an
Xx86 CPU and emulates behavior of physical
devices

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.49

Virtual Machines Internals

e X86 program running on VMWare on Linux

-VMWare creates 100MB file on Linux FS to
store emulated 100MB hard drive

- Translates program’s reads/writes into Linux
read/write syscalls to 100MB file

» Same for writes to screen
- Big slowdown, but tricks eliminate most overhead
* One physical machine can simulate dozens
» Benefits of physical isolation without HW
»“Bad” programs unable to change long-term state
 Virtualization is a powerful technique

- Like VM and syscall interposition, virtual
machines work by virtualizing the HW interface

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.50

Interpreted Code

« Virtual machines illustrate how interpreted
languages can be used for sandboxing
- Interpreter is a loop repeatedly decoding
and executing a sequence of instructions
» Simplest example: combinatorial circuits
- Can implement any stateless deterministic
computation as a combinatorial circuit
- Given boolean function f:{0,1}"? {0,1}, find
a combinatorial circuit that computes f
» T is deterministic and side-effect-free
» A network of AND/OR/NOT gates with n
inputs, 1 output, and no cycles or memory

- Easy to sandbox - evaluate circuit in sw

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.51

Interpreted Code Example

* You write an extensible spam-filtering app

-Your friend Sam creates a program that takes
an email as input and classifies it either as
“spam” or “not spam”

- If you don’t trust Sam, you can’t run his
program - might be a Trojan horse!

* Express Sam’s program as boolean function f
- Takes an email (a bit-string) as input and
produces a boolean output
e Solution: Sam expresses his program as a
combinatorial circuit
- Malicious filter can't leak email contents
- Worst case: causes wrong filtering decisions

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.52

Boolean Circuits Interpreter

* Use simple NAND gates to express
arbitrary combinatorial logic

« Emulate circuit using very simple CPU:
- Store each value in circuit in a register

- Each instruction reads inputs from two
specified registers, computes their
NAND, and stores result to third register

»NAND r 1037, r27, r45
computes NAND of bit in register r27 and
bit in r45, storing result in r1037

- Interpreter only takes a few lines of code
« But, circuits aren't very friendly/flexible
- Apply same principles to an interpreter

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.53

Secure Interpreter

» Design language so it is impossible to
express operations that would violate
sandboxing policy
-Ex: no way to do 170 or R/W outside

program’s address space
« Example: Berkeley Packet Filter
- Interpreted language for expressing
packet filters that can be downloaded into
the kernel

- Language prevents writers from expressing
harmful programs

- Ex: can't write non-terminating loops
because no backward jumps are allowed

10/23/06 Joseph CS161 @UCB Fall 2006 Lec 15.54

Page 9

Summary

e Defensive programming won't prevent bugs or
security problems

- But, it can help contain the damage
e Testing the uncommon is critical

« Several programming techniques for avoiding
or handling problems

e Use isolation techniques for untrusted code
- Module decomposition
- System call interposition
- Virtual machines and secure interpreters

10/23/06 Joseph CS161 ©UCB Fall 2006 Lec 15.55

Page 10

