
1

CS 161– 25 October 2006© 2006 Doug Tygar 1

CS 161 – Random Number Generation

25 October 2006

CS 161 – 25 October 2006© 2006 Doug Tygar 2

Cryptography requires random numbers

• Generating random keys for crypto protocols
• Generating random bits for one-time pads
• We need random bits to be unpredictable

• Goals:
– Generate truly random bits
– Stretch small amounts of randomness into large pseudorandom

sequences
• Indistinguishable from random bits

2

CS 161 – 25 October 2006© 2006 Doug Tygar 3

What’s wrong with this code

unsigned char key[16];
srand(time(NULL));
for (i=0; i<16; i++)
key[i] = rand() & 0xFF;

CS 161 – 25 October 2006© 2006 Doug Tygar 4

What’s wrong with this code

unsigned char key[16];
srand(time(NULL));
for (i=0; i<16; i++)
key[i] = rand() & 0xFF;

int rand(void);

void srand(unsigned int seed);

time_t time(time_t *t);

3

CS 161 – 25 October 2006© 2006 Doug Tygar 5

What’s wrong with this code

unsigned char key[16];
srand(time(NULL));
for (i=0; i<16; i++)
key[i] = rand() & 0xFF;

static unsigned int next = 0;
int rand(void){next = next * 1103515245 +
12345; return next % 32768;}

void srand(unsigned int seed){next = seed;}

time_t time(time_t *t);

of seconds since January 1, 1970

CS 161 – 25 October 2006© 2006 Doug Tygar 6

Problem: easy to guess key

• Only about 225 seconds/year
• May be able to guess exactly

4

CS 161 – 25 October 2006© 2006 Doug Tygar 7

Problem: Output is not random

int rand(void){
next = next * 1103515245 + 12345;
return next % 32768;

}

• Output is not random (low order bits flips between 0 & 1)
• Output of rand depends on previous value!

CS 161 – 25 October 2006© 2006 Doug Tygar 8

Examples of real problems

• Netscape generated SSL keys using time & process ID
as seed; easily guessable & breakable

• RSA keys generated same way in Netscape
• Kerberos had same problem in generating keys
• Another Kerberos problem: memset() to erase seed

after used actually erased seed before it was used; seed
always zero

• X Windows “magic cookie” generated as shown above;
only 28 random values

5

CS 161 – 25 October 2006© 2006 Doug Tygar 9

Examples of real problems

• Sun NFS filehandles generated based on pseudorandom
value from time of day and process ID; this allows
anyone who can guess filehandle to access file

• Similar problems in DNS resolvers
• Majordomo had bad pseudorandom number generator;

could forge mailing list acceptance
• PGP used return value of read() (rather than read

buffer) to seed generator; but read()always returns 1
(byes read)

• Online poker site used bad random number generator;
could be guessed allowing one to always win at poker

CS 161 – 25 October 2006© 2006 Doug Tygar 10

Morals

• Seeds must be unpredictable
– 128 bit sequences are sufficient
– All possibilities equally likely
– Best if seed is truly random

• Pseudorandom generator must be secure
– No detectable pattern
– Even if attacker can guess some pseudorandom bits, must not

be able to find other pseudorandom bits

6

CS 161 – 25 October 2006© 2006 Doug Tygar 11

Two types of generators

• Truly random number generator (TRNG)
• Cryptographically-secure Pseudorandom number

generator (CS-PRNG)

• CS-PRNG not distinguishable from truly random bits
• Distinguishing equivalent to breaking cryptosystem

CS 161 – 25 October 2006© 2006 Doug Tygar 12

Structure

• First, generate a seed
– Truly random
– For example, 128 bits
– Similar to a cryptographic key

• Generate pseudorandom output based on the seed
– Stretched into larger sequence
– Billions of bits are no problem

7

CS 161 – 25 October 2006© 2006 Doug Tygar 13

CS-PRNG

• Easy to generate
• For example, we can computer AES-CBC(seed, 0n) to

generate n pseudorandom bits

CS 161 – 25 October 2006© 2006 Doug Tygar 14

TRNG

• One idea is to use physical process
• Use randomness from other sources

– High-speed clock (nanosecond level)
– Soundcard
– Keyboard input
– Disk timing

• We want to combine data from many sources
• Good approach: use cryptohash (e.g., SHA-1)
• What doesn’t work

– IP address
– IP packet content
– Process ID

