CS 161 – Multilevel & Database Security

30 October 2006

© 2006 Doug Tygar

CS 161-30 October 2006

Military models of security

- "Need to know"
- Three models of security
 - Classification
 - unclassified, classified, secret, top secret
 - Compartmentalization
 - · nuclear, crypto, weapons specific
 - Discretionary access control
 - Distribution lists

© 2006 Doug Tygar

What clearance means

- Clearance is primarily a restriction on what you can release
- Declassification = permission to discuss
- Everyday example: Non-disclosure agreements
- Advice: Be careful before agreeing to clearance or NDAs

© 2006 Doug Tygar

CS 161 - 30 October 2006

Two ways to rank systems

- How much do they protect military models of classification?
- What is the strength of mechanism

© 2006 Doug Tygar

History

US

Orange book (Trusted Computer Security Evaluation Criteria) \rightarrow TCSEC Rainbow Series

Europe

. Harmonized Criteria (UK, Germany, France, Holland) → ITSEC

Canada

CTCPEC

Internationalization

Common Criteria (now on version 3.0)

© 2006 Doug Tygar

CS 161 - 30 October 2006

US levels

D: minimal protection

C1: discretionary access control

C2: controlled access control

B1: labeled security protection

B2: structured protection

B3: security domains

A1: verified design

A2: verified implementation (never achieved)

© 2006 Doug Tygar

Key ideas

- Bell-Lapudula
- We trust people, not processes
- Small "trusted computing base" (TCB)
- Includes a "security kernel"
- Processes "read down"
- Processes "write up" (star property)

© 2006 Doug Tygar

CS 161 - 30 October 2006

More on the star property

- Star property acts as a "King Midas" touch
- Once a process reads a classified file, its security level is boosted to that of the file
- Then everything it writes (modifies, deletes, etc.) is at the same security level

© 2006 Doug Tygar

Problem: covert channels

- There is more than one way to leak information
 - Existence of a file
 - System load
 - Paging behavior
- Example: TENEX passwords

© 2006 Doug Tygar

CS 161 - 30 October 2006

Covert channels

- Covert channels are virtually impossible to remove entirely
- So we restrict the bandwidth of what can transmitted
- This means that high-classification processes are heavily restricted

© 2006 Doug Tygar

What killed the Orange Book?

- System performance was poor
 - Often 1,000 to 10,000 times worse than unsecure operating systems
- Using special hardware was expensive
- Formal methods for evaluation never really worked
- User interface was horrible
- Evaluation took years (and was expensive)

© 2006 Doug Tygar

CS 161 - 30 October 2006

The last great evaluated system

Windows NT was evaluated at the C-2 level of security
 ... as long as you didn't hook it up to a network.

© 2006 Doug Tygar

Today's problems & the Orange book

- Problems we face today seem strangely distant from the Orange book
- Denial of service, worms, privacy, aggregation of data ... none of these are addressed

© 2006 Doug Tygar

CS 161 - 30 October 2006

Common Criteria

- Protection Profile
- Security Target

© 2006 Doug Tygar

Common Criteria Levels

- EAL 1: functionally tested (US between D & C1)
- EAL 2: structurally tested (US C1)
- EAL 3: methodically tested & checked (US C2)
- EAL 4: methodically designed, tested, & reviewed (US B1)
- EAL 5: semiformally designed & tested (US B2)
- EAL 6: semiformally verified design & tested (US B3)
- EAL 7: formally verified design & tested (US A1)

© 2006 Doug Tygar

CS 161 - 30 October 2006

Side channel examples

- · Sound of keyboard typing
- Timing
- Power attacks

© 2006 Doug Tygar

Simple Power Analysis

- Top line (DES)
- Bottom line (one cycle of DES)

Differential Power Analysis

• Repeat, and look for statistical averaging

Shamir secret sharing

How did this work

© 2006 Doug Tygar

CS 161 - 30 October 2006

Adding with Shamir secret sharing

Suppose we want to find everyone's average salary

© 2006 Doug Tygar

Census bureau problem

- Wants to publish average statistics
- But how do they change when a new person joins?

© 2006 Doug Tygar

Approaches that don't work

- Adding noise
 - Why not?
- Thresholding
 - Why not?

© 2006 Doug Tygar

CS 161 - 30 October 2006

Census bureau problem

- Wants to publish average statistics
- But how do they change when a new person joins?

© 2006 Doug Tygar

Approaches that don't work

- · Adding noise
 - Why not?
- Thresholding
 - Why not?
- · Revealing Medians
 - Why not

© 2006 Doug Tygar

CS 161 - 30 October 2006

Example

Name	Sex	Race	Aid	Fines	Drugs	Dorm
Adams	M	С	5000	45	1	Holmes
Bailey	М	В	0	0	0	Grey
Chin	F	Α	3000	20	0	West
Dewitt	М	В	1000	35	3	Grey
Earhart	F	С	2000	95	1	Holmes
Fein	F	С	1000	15	0	West
Groff	М	С	4000	0	3	West
Hill	F	В	5000	10	2	Holmes
Koch	F	С	0	0	1	West
Liu	F	Α	0	10	2	Grey
Majors	М	С	2000	0	2	Grey

- List NAME where SEX=M \(\times \) DRUGS=1
- List NAME where
 (SEX=M ∧ DRUGS=1)
 ∨ (SEX≠M ∧ SEX ≠ F)
 ∨ (DORM=AYRES)

© 2006 Doug Tygar

Census rules

- "n items over k percent"
- Withhold data if n items represent over k percent of data reported.

© 2006 Doug Tygar

CS 161 - 30 October 2006

Sum attack

Sums of Financial Aid by Dorm and Sex

	Holmes	Grey	West	Total
М	5000	3000	4000	12000
F	7000	0	4000	11000
Total	12000	3000	8000	23000

• Conclusion - no woman in Grey receives financial aid

© 2006 Doug Tygar

Count attack

	Holmes	Grey	West	Total
М	5000	3000	4000	12000
F	7000	0	4000	11000
Total	12000	3000	8000	23000

	Holmes	Grey	West	Total
М	1	3	1	5
F	2	1	3	6
Total	3	4	4	11

© 2006 Doug Tygar

CS 161 - 30 October 2006

Median attack

- By manipulating the data or finding the median of two intersecting sets, can reveal individual data
- Median aid when sex = m, drugs = 2

© 2006 Doug Tygar

Tracker attacks

- · Instead of asking
 - count ((SEX=F) \land (RACE=C) \land (DORM=Holmes))
- We ask
 - count (SEX=F)
 - count ((SEX=F) \land (RACE≠C) \lor (DORM≠Holmes))

© 2006 Doug Tygar

CS 161 - 30 October 2006

More generally any linear combination

• If we ask n queries of n variables, we can often manipulate the results

© 2006 Doug Tygar

Approaches to control

- · Limited response supression
 - But vulnerable to trackers
- · Combined results and rounding
 - Vulnerable to iterated queries
- Random sample
 - Inaccurate results, vulnerable to iterated queries
- Random data pertubation
 - Vulnerable to interated queries
- Query analysis
 - Really hard

© 2006 Doug Tygar

CS 161 - 30 October 2006

Imperfect solutions for inference

- · Suppress obviously sensitive information
- · Track what the user knows
- Disguise the data

© 2006 Doug Tygar