CS 161 — Electronic Commerce 15 November 2006 © 2006 Doug Tygar CS 161– 15 November 2006

Stages in E-commerce purchase

© 2006 Doug Tygar

Stages in e-commerce purchase

- Advertising
- Solicitation
- Negotiation
- Purchase
- Payment
- Delivery
- Ordering/support

© 2006 Doug Tygar

CS 161 – 15 November 2006

Credit cards as an enabler

- Standard purchase model reveals credit information
- Overhead costs can be high for microtransactions
- Acquiring Bank vs. Consumer Bank
- Payment processors

© 2006 Doug Tygar

Information goods

- Consider the purchase of an information good or service:
 - Library information
 - Search services
 - Software
 - Video clips
- These transactions may be large value or microtransactions
- In either case, atomicity is crucial

© 2006 Doug Tygar

Payment methods: Atomicity

© 2006 Doug Tygar

CS 161- 15 November 2006

What is atomicity?

- I won't try to give a formal definition
- 3 types of atomicity:
- Money atomicity
 - All money transfers complete with non-ambiguous results
 - Money is neither destroyed nor created
- Goods atomicity
 - One receives goods if and only if one pays
 - Example: Cash On Delivery parcels
- Certified delivery
 - Both buyer and seller can prove the delivered content
 - If you get bogus goods, you can prove it

© 2006 Doug Tygar

NetBill goals

- Real service
- Highly atomic transactions
- Micro-transactions
- Full security and privacy

© 2006 Doug Tygar

NetBill features

- · Focus on info goods/services (journal articles)
- Microtransaction (10¢ purchase: 1¢ overhead)
- Variable pricing
- · Fully integrated access control
- DES/RSA/DSA combo for best performance
- Electronic statements & account creation
- · Certified delivery: proof of purchase/content

© 2006 Doug Tygar

CS 161 - 15 November 2006

Netbill model

- An electronic credit card to enable network based commerce
- Provides billing services on behalf of network attached merchants.

© 2006 Doug Tygar

Netbill protocol – low level

- Money atomicity
 - Accounts are held at a single server, and are modified with local atomic (ACID) transactions
- Goods atomicity
 - Customer receives decryption key for goods only if she pays
 - If customer pays, decryption key available from multiple sources (merchant and NetBill server)
 - Key can be delivered by alternative network (such as telephone) if necessary
- Certified delivery
 - If customer receives junk or bogus goods, can prove the contents to a judge
 - Crypto checksum of goods (signed by both customer and merchant) are stored at NetBill server
 - Signed copy of decryption key stored by all parties!

© 2006 Doug Tygar

CS 161 - 15 November 2006

Role of Anonymity in EC

© 2006 Doug Tygar

Why study anonymity?

- Privacy concerns
 - individual
 - corporate
 - national
- Technology for collecting private statistics
- Understand theoretical limits, countermeasures
- Understanding semi-anonymity
 - Allows government search in exceptional circumstances
- Insights
 - e-commerce
 - distributed protocols
 - cryptography
 - survivability

© 2006 Doug Tygar

CS 161 - 15 November 2006

Anonymous computation

- There is extensive work on anonymous and secret communication (cryptography)
- But what if we want to compute a function of the secure values?
- In puzzle, we want to add "encrypted" values
- Examples:
 - Compute census statistics on usage or population
 - Make an anonymous purchase and then be able to prove that goods were delivered correctly
 - Anonymously auction goods without revealing any bids (except the winning bid) or bidders

© 2006 Doug Tygar

Is anonymous computation feasible?

- · Good news:
 - In theory: any computation can be anonymized
- · Bad news:
 - In general, constructions are complicated
 - Most constructions multiply number of messages by a factor of at least 1000 (and often, much higher, like 10²⁰)
 - Usually, simple IP location tracing (traffic analysis) reveals identity of parties
 - Computation requires complex crypto operations.
 - Running times for "simple" anonymous computations are usually measured in days or years.
- So researchers have relied on partial solutions
 - Mixes, pseudonyms, escrow

CS 161 - 15 November 2006

Mixes Use intermediate forwarding (Anonymized) source agents Examples: onion routing, crowds, anonymizer.com, etc. Identity traceable Idea simultaneously thought of by several researchers Intermediate forwarding agent Problems: Identity untraceable - intermediary knows all - subject to traffic analysis and statistical analysis Recipient - can not link old messages to new messages © 2006 Doug Tygar CS 161 - 15 November 2006

Pseudonymous identity

- Establish a consistent, but disguised identity
- · Example: mail forwarders
- Can disguise basic facts about identity, but may be traceable from patterns of use
- Once identity is revealed, then all previous uses are traceable

© 2006 Doug Tygar

CS 161 - 15 November 2006

Escrow

- Use pseudonym, but store real identity where law enforcement can find it.
 - Refinement: split identity into multiple parts
 - Store them in different locations
- Depends on procedural mechanisms (e.g. search warrants) for privacy
- Has drawbacks of pseudonym
- · Government approach to cryptography

© 2006 Doug Tygar

Auction types

- Auctions
 - Allocate scarce resources
 - Proposed to ration Internet bandwidth
- · Three types of auctions
 - 1

English auction (price goes up)

- advantages: encourages "honest" bids
- disadvantages: slow
 - not private

Sealed bid auction

- advantages: constant time
- disadvantages: does not encourage "honest" bids, auctioneer knows all
- $\mathbf{1}$

Dutch auction (price goes down)

- advantages: protects privacy
- disadvantages: slow

does not encourage "honest" bids

© 2006 Doug Tygar

CS 161 - 15 November 2006

Vickrey auction

- Vickrey gave a way to combine best features of English auctions and sealed-bid auction
- Second-price auction
 - Highest bidder wins
 - Price is the value of the second highest bid
 - Example: Alice is highest bidder for \$100;

Bob is second highest bidder for \$80; Alice wins the bid, but pays only \$80

© 2006 Doug Tygar