Malware
Worms and Viruses

- **Worms vs. Viruses**
 - Worms replicate and propagate on their own
 - Viruses need human interaction to propagate
 - Worms typically spread via network connections to vulnerable services
 - Viruses typically spread via email or files

- **Infection vector**
 - Network scanning, email, web sites, executables

- **Payload**
 - Install bot/rootkit, erase files, launch DDoS, steal information, send spam, serve web pages
Network scanning

- Choose random addresses
- Split up address space
- Pre-generated hitlists
- Propagation rates
 - Random Constant Spread (RCS) model:
 \[
 a(t) = \frac{e^{K(t-T)}}{1 + e^{K(t-T)}}
 \]
 - \(a(t)\) is fraction infected, \(K\) is initial compromise rate, \(T\) is start time constant
Detection and prevention

- Signatures
- Heuristics, hard-coded rules
- Anomaly detection
- Throttling
Targeted attacks

- Aimed at particular company/individual/organization
- One-of-a-kind means won’t have a signature
- Sometimes used for corporate espionage
Botnets

- Network of compromised machines (can be huge)
- Rented out for evil purposes (DDoS, spam, phishing, etc.)
- Can be recruited by worm, virus, spyware
Operating System Security
Memory protection

- Private address space
 - Separate VM table for each address space (process)
 - A program can’t even describe another program’s addresses
- Kernel maintains page table; process can’t alter it
Dual mode operation

- Hardware provides separate kernel and user modes
- Transition kernel → user
 - Create and initialize process address space, prepare hardware settings (registers, tables), switch mode and PC
- Transition user → kernel
 - Trap/interrupt (including system call)
 - Execute known code to handle request
 - Certain API, system calls, made available with limitations on functionality
 - All arguments must be checked thoroughly
Rootkits
The basics of rootkits

- Software and tricks to hide presence of malware
- Edit logs, change executables (*ls*, *top*, etc.), alter registry, even intercept system calls
- Hides existence to maintain access/control
How can you tell you’ve been rooted?

- Strange processes or files
- Extra network connections (seen from outside!)
- Changed configuration (registry, startup)
- Different sources give different information
- In general, very difficult to detect “in-box”
Elections and Electronic Voting
Security goals for an election

- Integrity: No fraud
- Transparency: Verify election conducted properly
- Privacy: No one learns about voter’s choices
- Secrecy: Voter cannot prove how he/she voted
Security goals applied to DRE voting machines

- Integrity: Machine must allow each voter to vote once and prevent tampering
- Transparency: Machine should be verifiably trustworthy
- Privacy: Machine should randomize vote order
- Secrecy: Machine must not give receipt
Possible solutions for voting machine security

- Paper receipt dropped into audit box after voter verifies
- Machine prints ballot, which voter places in ballot box