
CS 194-1 (CS 161) 
Computer Security

Midterm 2 Review
Part 1

Todd Kosloff



Mt2 Part 1 Slide 211/1/06 Kosloff CS161 ©UCB Fall 2006

Some Web Server Threats and Attacks
• Replace static content (“defacement”)

– Exploit vulnerability to access Web or File 
servers

• (Distributed) Denial of Service attack
– Request large image or emulate complex 
transaction

• Unauthorized database access
– Exploit vulnerability (e.g., SQL injection) 
to read/write database

• Attack server OS or other services
– Exploit vulnerability to disable server



Mt2 Part 1 Slide 311/1/06 Kosloff CS161 ©UCB Fall 2006

Stopping Some Attacks
• Replace static content (“defacement”)

– Harden server (latest patch levels, minimum 
services)

– Limit data on file server
• (Distributed) Denial of Service attack

– Add load balancer, DNS round-robin, 
replicated clusters, …

• Unauthorized database access
– Harden server (latest patch levels, min. svcs)
– Sanity check all arguments

• Attack server OS or other services
– Harden servers (latest patch levels, min. svcs)



Mt2 Part 1 Slide 411/1/06 Kosloff CS161 ©UCB Fall 2006

DeMilitarized Zone (DMZ)

• Separate firewall rules for internal zone and DMZ
– Internet-DMZ rules only allow web, e-mail traffic
– DMZ-Intranet rules only allow file, e-mail, remote login from DMZ
– No Internet-Intranet access

• Where to place e-mail server?
– Add proxy to isolate e-mail access/storage from e-mail forwarding

User

User

User

User

Web
Server

File
Server

DMZ

E-Mail
ServerIntranet

E-Mail
Proxy

VPN
Server

Internet



Mt2 Part 1 Slide 511/1/06 Kosloff CS161 ©UCB Fall 2006

Intrusion Detection Systems
• Detecting attempts to penetrate our systems

– Used for post-mortem activities
– Related problem of extrusion (info leaking out)

• In pre-network days (centralized 
mainframes)…
– Primary concern is abuse and insider 
information access/theft

– Reliance on logging and audit trails
• But, highly labor intensive to analyze logs

– What is abnormal activity?
– Ex: IRS employees snooping records
– Ex: Moonlighting police officers



Mt2 Part 1 Slide 611/1/06 Kosloff CS161 ©UCB Fall 2006

Signature vs. Anomaly Detection
• Signatures

– Language to specify intrusion patterns

– Packet contents
» Could be single or multiple packets (stream reconstruction)

• Anomalies
– Analyze normal operation (behavior), look 
for anomalies

– Uses AI techniques: Statistical Learning 
Techniques

– Compute statistical properties of 
“features”



Mt2 Part 1 Slide 711/1/06 Kosloff CS161 ©UCB Fall 2006

Some Challenges

• What is normal traffic?
– Server, desktop, PDA, PDA/phone, …
– My normal traffic ≠ your normal traffic
– Lots of data for servers

• Why do we need sufficient signal and noise 
separation?
– To avoid too many false alarms!
– Legitimate IRC usage flagged as bot infection!

• What happens if signals are missed?
– Possible intrusion!



Mt2 Part 1 Slide 811/1/06 Kosloff CS161 ©UCB Fall 2006

Honeypots and Tarpits
• Honeypots

– Closely monitored network decoys
– May distract adversaries from more 
valuable machines on a network

• Tarpits
– Slow down scanning tools/worms to kill 
their performance/propagation because 
they rely on quick turnarounds

– Example:
»Allow TCP connection to open, but don’t 
send information through it, and don’t let it 
close.



Mt2 Part 1 Slide 911/1/06 Kosloff CS161 ©UCB Fall 2006

Buffer Overrun Vulnerabilities
• Most common class of implementation flaw
• C is basically a portable assembler

– Programmer exposed to bare machine
– No bounds-checking for array or pointer 
accesses

• Buffer overrun (or buffer overflow) 
vulnerabilities
– Out-of-bounds memory accesses used to 
corrupt program’s intended behavior



Mt2 Part 1 Slide 1011/1/06 Kosloff CS161 ©UCB Fall 2006

Format String Vulnerabilities
• void vulnerable() {

char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)
return;

printf(buf);
}

• Do you see the bug?
• Last line should be printf("%s", buf)

– If buf contains “%” chars, printf() will look 
for non-existent args, and may crash or core-
dump trying to chase missing pointers

• Reality is worse…



Mt2 Part 1 Slide 1111/1/06 Kosloff CS161 ©UCB Fall 2006

TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls 
because system calls are not atomic

• But, TOCTTOU vulnerabilities can arise 
anywhere there is mutable state shared 
between two or more entities
– Example: multi-threaded Java servlets and 
applications are at risk for TOCTTOU



Mt2 Part 1 Slide 1211/1/06 Kosloff CS161 ©UCB Fall 2006

Principles of Secure Software
• Let’s explore some principles for building 
secure systems
– Trusted Computing Base & several principles

• These principles are neither necessary nor 
sufficient to ensure a secure system design, 
but they are often very helpful

• Goal is to explore what you can do at design 
time to improve security
– How to choose an architecture that helps 
reduce likelihood of system flaws (or increases 
survival rate)



Mt2 Part 1 Slide 1311/1/06 Kosloff CS161 ©UCB Fall 2006

The Trusted Computing Base (TCB)
• Trusted Component: 

– A system part we rely upon to operate 
correctly for system security

– (A part that can violate our security goals)
• Trustworthy components:

– System parts that we’re justified in trusting 
(assume correct operation)

• In Unix, the super-user (root) is trusted
– Hopefully they are also trustworthy…

• Trusted Computing Base:
– System portion(s) that must operate correctly 
for system security goals to be assured



Mt2 Part 1 Slide 1411/1/06 Kosloff CS161 ©UCB Fall 2006

TCB Definition
• We rely on every component in TCB 
working correctly

• Anything outside isn’t relied upon
– Can’t defeat system’s security goals even 
if it misbehaves or is malicious

• TCB definition: 
– Must be large enough so that nothing 
outside the TCB can violate security



Mt2 Part 1 Slide 1511/1/06 Kosloff CS161 ©UCB Fall 2006

Three Cryptographic Principles

• Three principles widely accepted in crypto 
community that seem useful in computer 
security
– Conservative Design

» Prepare for the worst attack, just in case
– Kerkhoff’s Principle

»Do not rely on security through obscurity
– Proactively Study Attacks

»Try to hack your own system



Mt2 Part 1 Slide 1611/1/06 Kosloff CS161 ©UCB Fall 2006

Principles for Secure Systems
• 1. Security is Economics

– No system is 100% secure against all attacks
» Only need to resist a certain level of attack

• 2. Least Privilege
– Only give a program the minimum access privileges it 

legitimately needs to do its job
• 3. Use Fail-Safe Defaults

– Default Deny
• 4. Separation of Responsibility

– No one person or program has complete power
• 5. Defense in Depth

– Secure redundantly
• 6 and 7. Psychological Acceptability / Usability

– Users should want to use security



Mt2 Part 1 Slide 1711/1/06 Kosloff CS161 ©UCB Fall 2006

Principles of Secure Systems
• 8. Complete Mediation 

– Don’t forget to always check
• 9. Least Common Mechanism

– Be careful about reusing code
• 10. Detect if you can’t prevent
• 11. Orthogonal Security

– Mechanisms should work together
• 12. Don’t rely on security through obscurity
• 13. Design security in from the start



Mt2 Part 1 Slide 1811/1/06 Kosloff CS161 ©UCB Fall 2006

Writing Secure Code
• Goal is eliminating all security-relevant 
bugs, no matter how unlikely they are to 
be triggered in normal execution
– Intelligent adversary will find abnormal 
ways to interact with our code

• Different goal from software reliability
– Focus is on most likely to happen bugs
– Can ignore obscure condition bugs

• Dealing with malice is much harder than 
dealing with mischance



Mt2 Part 1 Slide 1911/1/06 Kosloff CS161 ©UCB Fall 2006

Three Fundamental Techniques
• (1) Modularity and decomposition for 
security

• (2) Formal reasoning about code using 
invariants

• (3) Defensive programming



Mt2 Part 1 Slide 2011/1/06 Kosloff CS161 ©UCB Fall 2006

Defensive Programming
• Like defensive driving, but for code: 

– Avoid depending on others, so that if they do something 
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is 
given invalid or unexpected inputs:
– Shouldn’t crash, cause undesirable side-effects, or 
produce dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave
• General strategy

– Assume attacker controls module’s inputs, make sure 
nothing terrible happens



Mt2 Part 1 Slide 2111/1/06 Kosloff CS161 ©UCB Fall 2006

Process for Writing Function Code
• First write down its preconditions and 
postconditions
– Specifies what obligations caller has and 
what caller is entitled to rely upon

• Verify that, no matter how function is 
called, if precondition is met at function’s 
entrance, then postcondition is guaranteed 
to hold upon function’s return 
– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either 
specification (preconditions/postconditions) 
or implementation (function code)



Mt2 Part 1 Slide 2211/1/06 Kosloff CS161 ©UCB Fall 2006

Loop Invariant
• An assertion that is true at entrance to the loop, on 

any path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body
• Example: Factorial function code

– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive


	CS 194-1 (CS 161) �Computer Security��Midterm 2 Review�Part 1
	Some Web Server Threats and Attacks
	Stopping Some Attacks
	DeMilitarized Zone (DMZ)
	Intrusion Detection Systems
	Signature vs. Anomaly Detection
	Some Challenges
	Honeypots and Tarpits
	Buffer Overrun Vulnerabilities
	Format String Vulnerabilities
	TOCTTOU Vulnerability
	Principles of Secure Software
	The Trusted Computing Base (TCB)
	TCB Definition
	Three Cryptographic Principles
	Principles for Secure Systems
	Principles of Secure Systems
	Writing Secure Code
	Three Fundamental Techniques
	Defensive Programming
	Process for Writing Function Code
	Loop Invariant

