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Some Web Server Threats and Attacks
• Replace static content (“defacement”)

– Exploit vulnerability to access Web or File 
servers

• (Distributed) Denial of Service attack
– Request large image or emulate complex 
transaction

• Unauthorized database access
– Exploit vulnerability (e.g., SQL injection) 
to read/write database

• Attack server OS or other services
– Exploit vulnerability to disable server
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Stopping Some Attacks
• Replace static content (“defacement”)

– Harden server (latest patch levels, minimum 
services)

– Limit data on file server
• (Distributed) Denial of Service attack

– Add load balancer, DNS round-robin, 
replicated clusters, …

• Unauthorized database access
– Harden server (latest patch levels, min. svcs)
– Sanity check all arguments

• Attack server OS or other services
– Harden servers (latest patch levels, min. svcs)
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DeMilitarized Zone (DMZ)

• Separate firewall rules for internal zone and DMZ
– Internet-DMZ rules only allow web, e-mail traffic
– DMZ-Intranet rules only allow file, e-mail, remote login from DMZ
– No Internet-Intranet access

• Where to place e-mail server?
– Add proxy to isolate e-mail access/storage from e-mail forwarding
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Intrusion Detection Systems
• Detecting attempts to penetrate our systems

– Used for post-mortem activities
– Related problem of extrusion (info leaking out)

• In pre-network days (centralized 
mainframes)…
– Primary concern is abuse and insider 
information access/theft

– Reliance on logging and audit trails
• But, highly labor intensive to analyze logs

– What is abnormal activity?
– Ex: IRS employees snooping records
– Ex: Moonlighting police officers
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Signature vs. Anomaly Detection
• Signatures

– Language to specify intrusion patterns

– Packet contents
» Could be single or multiple packets (stream reconstruction)

• Anomalies
– Analyze normal operation (behavior), look 
for anomalies

– Uses AI techniques: Statistical Learning 
Techniques

– Compute statistical properties of 
“features”
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Some Challenges

• What is normal traffic?
– Server, desktop, PDA, PDA/phone, …
– My normal traffic ≠ your normal traffic
– Lots of data for servers

• Why do we need sufficient signal and noise 
separation?
– To avoid too many false alarms!
– Legitimate IRC usage flagged as bot infection!

• What happens if signals are missed?
– Possible intrusion!
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Honeypots and Tarpits
• Honeypots

– Closely monitored network decoys
– May distract adversaries from more 
valuable machines on a network

• Tarpits
– Slow down scanning tools/worms to kill 
their performance/propagation because 
they rely on quick turnarounds

– Example:
»Allow TCP connection to open, but don’t 
send information through it, and don’t let it 
close.
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Buffer Overrun Vulnerabilities
• Most common class of implementation flaw
• C is basically a portable assembler

– Programmer exposed to bare machine
– No bounds-checking for array or pointer 
accesses

• Buffer overrun (or buffer overflow) 
vulnerabilities
– Out-of-bounds memory accesses used to 
corrupt program’s intended behavior
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Format String Vulnerabilities
• void vulnerable() {

char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)
return;

printf(buf);
}

• Do you see the bug?
• Last line should be printf("%s", buf)

– If buf contains “%” chars, printf() will look 
for non-existent args, and may crash or core-
dump trying to chase missing pointers

• Reality is worse…
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TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls 
because system calls are not atomic

• But, TOCTTOU vulnerabilities can arise 
anywhere there is mutable state shared 
between two or more entities
– Example: multi-threaded Java servlets and 
applications are at risk for TOCTTOU
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Principles of Secure Software
• Let’s explore some principles for building 
secure systems
– Trusted Computing Base & several principles

• These principles are neither necessary nor 
sufficient to ensure a secure system design, 
but they are often very helpful

• Goal is to explore what you can do at design 
time to improve security
– How to choose an architecture that helps 
reduce likelihood of system flaws (or increases 
survival rate)



Mt2 Part 1 Slide 1311/1/06 Kosloff CS161 ©UCB Fall 2006

The Trusted Computing Base (TCB)
• Trusted Component: 

– A system part we rely upon to operate 
correctly for system security

– (A part that can violate our security goals)
• Trustworthy components:

– System parts that we’re justified in trusting 
(assume correct operation)

• In Unix, the super-user (root) is trusted
– Hopefully they are also trustworthy…

• Trusted Computing Base:
– System portion(s) that must operate correctly 
for system security goals to be assured
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TCB Definition
• We rely on every component in TCB 
working correctly

• Anything outside isn’t relied upon
– Can’t defeat system’s security goals even 
if it misbehaves or is malicious

• TCB definition: 
– Must be large enough so that nothing 
outside the TCB can violate security



Mt2 Part 1 Slide 1511/1/06 Kosloff CS161 ©UCB Fall 2006

Three Cryptographic Principles

• Three principles widely accepted in crypto 
community that seem useful in computer 
security
– Conservative Design

» Prepare for the worst attack, just in case
– Kerkhoff’s Principle

»Do not rely on security through obscurity
– Proactively Study Attacks

»Try to hack your own system
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Principles for Secure Systems
• 1. Security is Economics

– No system is 100% secure against all attacks
» Only need to resist a certain level of attack

• 2. Least Privilege
– Only give a program the minimum access privileges it 

legitimately needs to do its job
• 3. Use Fail-Safe Defaults

– Default Deny
• 4. Separation of Responsibility

– No one person or program has complete power
• 5. Defense in Depth

– Secure redundantly
• 6 and 7. Psychological Acceptability / Usability

– Users should want to use security
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Principles of Secure Systems
• 8. Complete Mediation 

– Don’t forget to always check
• 9. Least Common Mechanism

– Be careful about reusing code
• 10. Detect if you can’t prevent
• 11. Orthogonal Security

– Mechanisms should work together
• 12. Don’t rely on security through obscurity
• 13. Design security in from the start
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Writing Secure Code
• Goal is eliminating all security-relevant 
bugs, no matter how unlikely they are to 
be triggered in normal execution
– Intelligent adversary will find abnormal 
ways to interact with our code

• Different goal from software reliability
– Focus is on most likely to happen bugs
– Can ignore obscure condition bugs

• Dealing with malice is much harder than 
dealing with mischance
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Three Fundamental Techniques
• (1) Modularity and decomposition for 
security

• (2) Formal reasoning about code using 
invariants

• (3) Defensive programming
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Defensive Programming
• Like defensive driving, but for code: 

– Avoid depending on others, so that if they do something 
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is 
given invalid or unexpected inputs:
– Shouldn’t crash, cause undesirable side-effects, or 
produce dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave
• General strategy

– Assume attacker controls module’s inputs, make sure 
nothing terrible happens
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Process for Writing Function Code
• First write down its preconditions and 
postconditions
– Specifies what obligations caller has and 
what caller is entitled to rely upon

• Verify that, no matter how function is 
called, if precondition is met at function’s 
entrance, then postcondition is guaranteed 
to hold upon function’s return 
– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either 
specification (preconditions/postconditions) 
or implementation (function code)
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Loop Invariant
• An assertion that is true at entrance to the loop, on 

any path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body
• Example: Factorial function code

– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive
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