CS 194-1 (CS 161) Computer Security

Midterm 3 Review

Part 1

Database Inference Control

Census bureau problem

- · Wants to publish average statistics
- But how do they change when a new person joins?

Complex Queries Only

Name	Sex	Race	Aid	Fines	Drug	Dorm
					S	
Adams	M	С	5000	45	1	Holmes
Bailey	M	В	0	0	0	Grey
Chin	F	Α	3000	20	0	West
Dewitt	M	В	1000	35	3	Grey
Earhart	F	С	2000	95	1	Holmes
Fein	F	С	1000	15	0	West
Groff	M	С	4000	0	3	West
Hill	F	В	5000	10	2	Holmes
Koch	F	С	0	0	1	West
Liu	F	Α	0	10	2	Grey
Majors	M	С	2000	0	2	Grey

- List NAME where SEX=M ∧ DRUGS=1
- List NAME where
 (SEX=M ∧ DRUGS=1)
 ∨ (SEX≠M ∧ SEX ≠ F)
 ∨ (DORM=AYRES)

Approaches that don't work

- Adding noise
 - Why not?
- Thresholding
 - Why not?
- Revealing Medians
 - Why not

More generally any linear combination

 If we ask n queries of n variables, we can often manipulate the results

Approaches to control

- · Limited response supression
 - But vulnerable to trackers
- Combined results and rounding
 - Vulnerable to iterated queries
- Random sample
 - Inaccurate results, vulnerable to iterated queries
- Random data pertubation
 - Vulnerable to interated queries
- · Query analysis
 - Really hard

Watermarking

Watermarking

We want to protect data:

- Video, sound, music (Digimarc, Intertrust, etc)
- Programs (Collberg, Thomborson)
- Statistical data

Examples of "traditional" protection methods:

- False entries in biographical dictionaries
- Copyright notices
- Licensing agreements
- Secure coprocessors

Watermarking

Watermarking:

- include low level bit data that marks information
- Either on a per-copy basis or a per-provider basis

Example: temperature database

- slightly adjust temps to mark uniquely
- · Store copies of info released
 - If reused, prove using similarities
- But what if adversary changes low-level info?

Motivation

- Intellectual property is important for the Internet
- · IP (images) are valuable
 - Costly to create high quality images
 - Users are attracted by good design
- Binary data is trivial to copy
- · The web is a headache for copyright protection
- Many methods for free data exchange
- Watermarking is seen as the white knight of copyright protection

The watermarking process (private

Embed a watermark

Requirements of invisible

- Watermarks
 Robust against tampering (un- & intentional)
 - Various image transformations (RST)
 - Image compression
 - Color requantization
 - Non-linear transformations (print and scan)
- Non-perceptible, hard to detect
- Easy to use, exportable, etc.
- How can watermarking be possible?
 - The visual system has very strong "error correction"
 - An images contains a lot of redundancies
 - Small changes are undetected
 - People are used to low image quality (TV, newspaper images)

Example: The NEC watermark

- There is no perceptible difference between the original and watermarked image
- But the difference image looks interesting
- The watermark is present everywhere!

Example: Robustness to cropping

- Let's use the Fourier transform to construct a scheme which is robust against cropping
- · Tile the image with small blocks of watermarks
 - For each block, we compute the Fourier transform
 - The watermark is embedded in the Fourier domain (each block)
 - Then we compute the inverse transform

Each block is handled individually

Problems of Watermarking

- Copyright protection is big business many attackers
- Internet spans continents and countries seamlessly
- Digital information is easy to copy
- Hackers are knowledgeable, creative, have lots of time, and are numerous
- Many attack opportunities
 - Few inventors, many attackers
 - Inventors despair after 3 years
- Human factors:
 - The default user does not understand watermarking
 - Human vision system is very robust to noise in images
 - Used to low quality in images (TV, strong JPEG compression)

Electronic Commerce

Information goods

- Consider the purchase of an information good or service:
 - Library information
 - Search services
 - Software
 - Video clips
- These transactions may be large value or microtransactions
- In either case, atomicity is crucial

What is atomicity?

- I won't try to give a formal definition
- · 3 types of atomicity:
- Money atomicity
 - All money transfers complete with non-ambiguous results
 - Money is neither destroyed nor created
- Goods atomicity
 - One receives goods if and only if one pays
 - Example: Cash On Delivery parcels
- Certified delivery
 - Both buyer and seller can prove the delivered content
 - If you get bogus goods, you can prove it

SSL model

Third party intermediary (Verisign)

Why study anonymity?

- Privacy concerns
 - individual
 - corporate
 - national
- Technology for collecting private statistics
- · Understand theoretical limits, countermeasures
- Understanding semi-anonymity
 - Allows government search in exceptional circumstances
- · Insights
 - e-commerce
 - distributed protocols
 - cryptography
 - survivability

Digicash

- 1 Consumer asks bank for anonymous digicash
- 2 Bank sends anonymous digicash bits to consumer
- 3 Consumer sends digicash to merchant in payment
- 4 Merchant checks that digicash has not been double spent
- 5 Bank verifies that digicash is valid

Problems

- -No atomicity
- Anonymity restricted in US
- -Interrupt transaction: ambiguous state
- -Detecting double spending is expensive

Mixes

- Use intermediate forwarding agents
- Examples: onion routing, crowds, anonymizer.com, etc.
- Idea simultaneously thought of by several researchers

· Problems:

- intermediary knows all
- subject to traffic analysis and statistical analysis
- can not link old messages to new messages

Pseudonymous identity

- Establish a consistent, but disguised identity
- · Example: mail forwarders
- Can disguise basic facts about identity, but may be traceable from patterns of use
- Once identity is revealed, then all previous uses are traceable

Escrow

- Use pseudonym, but store real identity where law enforcement can find it.
 - Refinement: split identity into multiple parts
 - Store them in different locations
- Depends on procedural mechanisms (e.g. search warrants) for privacy
- Has drawbacks of pseudonym
- Government approach to cryptography

Auction types

- Auctions
 - Allocate scarce resources
 - Proposed to ration Internet bandwidth
- Three types of auctions

English auction (price goes up)

· advantages: encourages "honest" bids

· disadvantages: slow

not private

Sealed bid auction

- · advantages: constant time
- · disadvantages: does not encourage "honest" bids, auctioneer knows all

Dutch auction (price goes down)

- · advantages: protects privacy
- · disadvantages: slow

does not encourage "honest" bids

Vickrey auction

- Vickrey gave a way to combine best features of English auctions and sealed-bid auction
- Second-price auction
 - Highest bidder wins
 - Price is the value of the second highest bid
 - Example: Alice is highest bidder for \$100;
 Bob is second highest bidder for \$80;
 Alice wins the bid, but pays only

\$80