
Homework 2
CS161 Computer Security, Fall 2008

Assigned 9/25/08
Due 10/02/08

For your solutions you should submit a hard copy; either hand written pages stapled
together or a print out of a typeset document1.

1 Security Protocols

1. (3 points) Three-pass protocol. Suppose Alice and Bob decide to use the following
“three-pass protocol” to setup a shared secret session key K. First, Alice chooses a
random K. Alice also generates a random secret one-time pad key KA and XORs it
with K. She sends M1 = KA ⊕ K to Bob. Bob generates a random secret one-time
pad key KB, XORs what he receives with it to compute M2 = M1 ⊕ KB, and sends
M2 to Alice. Alice computes M3 = M2 ⊕ KA, and sends M3 to Bob, who recovers K

as M3 ⊕ KB. Note that KA is known only to Alice, KB only to Bob.

• (2 points) Show that K = M3 ⊕ KB.

• (1 points) Suppose Eve can intercept the communication. Is this protocol secure
against an eavesdropper Eve? If not, what can Eve recover.

2. Extra Credit (5 points) Diffie-Hellman key exchange (DHKE).

Recall from class that DHKE proceeds as follows.

• Step 1. Alice selects a large prime number p and a multiplicative generator α

(mod p). Both p and α are made public.

• Step 2. Alice picks a secret random x, with 1 ≤ x ≤ (p − 2). She sends MA =
αx (mod p).

• Step 3. Bob picks a secret random y, with 1 ≤ y ≤ (p− 2). She sends MB = αy

(mod p).

1LATEX is the most suitable tool for typesetting mathematical documents, but other use of other editors

are perfectly acceptable



• Step 4. Using the received messages, Bob and Alice compute the shared session
key K. Alice calculates K with the knowledge of her secret and Bob’s message,
by computing MB

x (mod p). Similarly, Bob computes MA
y (mod p).

Here is man-in-the-middle attack on DHKE different from the one studied in class.
This version of the man-in-the-middle attack differs from the one seen in class, as
it has the “advantage” that Eve does not have to intercept and retransmit all the
messages between Alice and Bob.

Suppose Eve discovers that p = Mq +1, where q is an integer and M is small. Eve
intercepts αx (mod p) and αy (mod p) sent by Alice and Bob in steps 2 and 3 respec-
tively. Eve sends Bob (αx)q (mod p) as message MA in step 2, and sends Alice (αy)q

(mod p) in step 3. Step 4 proceeds as described, but using the modified values of MA

and MB.

• (2 points) Show that the Alice and Bob calculate the same key K ′.

• (3 points) Show that there are only M possible values for K ′, so Eve may find K ′

by exhaustive search.

Hint. Recall that the generator α is specially chosen. It generates all elements
between 1 and p under the exponentiation operation without repeats. Therefore,
α(p−1) = 1 (mod p).

2 Secret Sharing

In this section we study secret sharing schemes.
Definition of (n,t) threshold secret sharing scheme. A (n, t) threshold secret sharing

scheme is one where the secret can be efficiently computed given t of the n shares, but any
(t − 1) shares reveal no information about the secret.

1. Shamir polynomial scheme. (4 points) Suppose we using the scheme using polynomials
module a prime p, as described in class and the lecture notes. This scheme is called
Shamir polynomial scheme.

• (3 points) You have to setup a (30, 2) Shamir scheme, working mod prime p = 101.
Two of the shares are (1, 13) and (3, 12). Another person received the share (2, ∗),
but the part denoted by ∗ is unreadable. What is the correct value of ∗?

• Extensibility. (1 points) It is easy to extend Shamir’s polynomial mod p scheme,
to add new users. Show how could you extend a (n, t) Shamir scheme to a (n+1, t)
scheme that includes an extra user, without changing the shares for existing n

users.

2. Military office (4 points) A certain military office consists of 1 general, 2 colonels and
5 desk clerks. They have control of a powerful missile. They don’t want the missile
launched unless the general decides to launch it, or the 2 colonels decide to launch it,



or the 5 desk clerks decide to launch it, or 1 colonel and 3 desk clerks decide to launch
it. Describe how would you realize this policy with a secret sharing scheme.

3. XOR created shares. (3 points) Consider the following secret sharing scheme. To share
a secret a ∈ {0, 1}ℓ among a group of n people, we choose n − 1 values a1, a2 . . . an−1,
independently at random, where each ai ∈ {0, 1}ℓ. We select an = a ⊕ a1 ⊕ a2⊕. . . an−1.
We then distribute ai to the ith person in the group.

(a) (1 point) Is this a secure (n, n) threshold secret sharing scheme?

(b) (2 points) If your answer in previous sub-part is ’yes’, specifically :

• Show that a can be recovered from the n shares.

• Argue that any (n − 1) shares do not reveal any information about a.

If your answer in previous sub-part is ’no’, then either show that a can not be
recovered from all the n shares, or, that less than n shares are sufficient to recover
some information about a.

4. Visual Secret Sharing. (7 points) It turns out that you don’t need computers or so-
phisticated mathematics to realize secret sharing - you can implement even some of
the more complex secret sharing scenarios using nothing but transparency sheets that
can be overlaid on one another.

Suppose we decide to store a secret key text as a black-and-white image, say I. We
would ideally like to break the image I into two image shares, say I1 and I2, such
that neither I1 nor I2 provides any information about I individually, but if the two are
superimposed one on top of the other than I “pops out”.

To do this, the following idea is proposed: each pixel in I will be converted into a 2×2
square of sub-pixels in I1 and I2. In I1, we choose the shape of that sub-pixel square
to be one out of the patterns shown below (in Figure 1) at random.
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Figure 1: Two possible patters for a sub-pixel block in I1 and I2. (X denotes a black
sub-pixel).

In I2 , if the corresponding pixel in I is white, we choose the 2 × 2 square to have
exactly the same pattern as used in I1 for this pixel, and if it is black, we choose it to
have the opposite pattern.

• (2 points) Show how can we reconstruct each pixel in I, given the shares I1 and
I2.

• (2 points) Show that this is a secure (2,2) scheme, i.e individual shares do not
reveal anything by the original image.



• (3 points) Consider a slightly revised scheme where we split image I into three
image shares I ′

1, I ′

2 and I ′

3. In I ′

1, we randomly choose the shape of that sub-pixel
square to be one of the 3 patterns shown in Figure 2.
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Figure 2: Revised scheme – Three possible patterns for a sub-pixel block in I ′
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2 and I ′

3 .
(X denotes a black sub-pixel).

In I ′

2 , if the corresponding pixel in I is white, we choose the 2× 2 square to have
exactly the same pattern as used in I ′

1 for this pixel. If it is black, we choose it
to have a pattern randomly selected from the remaining two (other than the one
picked in I ′

1).

In I ′

3, if the corresponding pixel in I is white, we choose the 2× 2 square to have
exactly the same pattern as used in I ′

1 and I ′

2 . If it is black, we choose it to have
the remaining pattern (the one not picked in I ′

1 and I ′

2).

We can now distribute I ′

1, I ′

2 and I ′

3. We claim that this revised scheme is a secure
(3, 3) threshold secret sharing scheme. Is our claim sound? If not, how it violates
the definition of (3, 3) secret sharing scheme. If yes, explain why it satisfies the
definition.

3 Zero Knowledge Proofs

1. Square Roots. (9 points) Let n = pq be the product of two large primes. Let y be a
square mod n with gcd(y, n) = 1, y and n are public. Recall that finding square roots
mod n is hard. However, Peggy claims to know a square root s of y. Victor wants to
verify this, but Peggy does not want to reveal s. Given that, here is a method they
use:

• Step 1. Peggy chooses a random number r1 and lets r2 = sr−1
1 (mod n), such

that r1r2 = s(mod n).

She computes x1 = r2
1(mod n) and x2 = r2

2(mod n), and sends x1 and x2 to Victor.

• Step 2. Victor checks that x1x2 = y (mod n), then chooses either x1 or x2 at
random and asks Peggy to supply a square root of it. He checks that it is a correct
square root.

The first two steps are repeated in several rounds, until Victor is convinced. It should
be clear that of course, if Peggy knows s, the procedure works without problems.

• (3 points) Suppose Peggy does not know s. Can she construct two numbers x1,
x2 for each of which she knows the square roots, and such that x1x2 = y (mod

n)? Why or why not ? How does this fact help Victor find out that she does not
know s?



• (3 points) Suppose, however, that Peggy predicts correctly that Victor will always
ask for square root of x2. How can she compute x1 and x2 such that the method
always falsely convinces Victor that Peggy knows s at Step 2 of each round? (The
trivial solution is to send x2 = 1; this is easily detected and Victor is smart enough
to check for this case.)

• (3 points) Suppose that Victor chooses to ask Peggy for square root of either x1

or x2 randomly in Step 2. Peggy does not know s, and tries her luck in each
round by guessing whether Victor will ask for x2 or not in step 2. She constructs
x1,x2 using her guess, in the way you’ve devised in the previous sub-part, and
sends them to Victor. What is the probability that Victor is falsely convinced
that Peggy knows s after t = 10 rounds of the method.


