
Homework 3
CS161 Computer Security, Fall 2008

Assigned 10/07/08
Due 10/13/08

For your solutions you should submit a hard copy; either handwritten pages stapled together or a print out of a
typeset document1.

1 Program Correctness

1. Reasoning about Code. (8 points)

/ *
* Function StringEncrypt

* @ input : A string input that should be encrypted.

* @ key : 8 byte key value to be used for encryption.

* @ Return Value : On failure, it returns NULL. On success, it re turns a

* length-encoded encrypted value of the input string - the len gth of the

* actual encrypted string is encoded in the first 4 bytes, foll owed by the

* (not NULL-terminated) encrypted string.

* /

char *
StringEncrypt(char * input, char * key) {

size_t length = strlen (input);
unsigned int i;
char * encrypted = malloc (length + 4);

for (i = length; i != 0; i--)
{

* (encrypted + i + 4) = * (input + i) ˆ (key[i%8]); // XORing with key.

}

* (size_t *)(encrypted) = length;
return encrypted;
}

Figure 1: Code for Problem 1

The (poorly written) functionStringEncrypt , shown in Figure 1, encrypts the input string and returns the
encrypted string. The function is not memory safe, and does not behave correctly on all inputs.

1LATEX is the most suitable tool for typesetting mathematical documents, but other use of other editors are perfectly acceptable

• (4 points) Spot all the bugs that could cause the program to execute an unsafe memory operation.

• (4 points) Introduce the additional necessary checks to ensure that all memory operations in the function
execute safely, without changing the intended functionality. You may refer to theman pages for the
documentation of the C library function interface. You should show the checks inlined in the code above
at the right places where they should appear; you should annotate your inserted code as C comments to
demarcate it from original code.

2 Memory Errors

1. Heap overflows and double free bugs. (16 points) Consider the contrived example of a web server program,
shown in figure 2, which takes three command line arguments. It has several serious bugs which exploit
implementations of dynamic memory management functions.

int main (int argc, char * argv[])
{
1 char * p, * q, * r;
2
3 p = malloc (100); // Returns address 0x8049000
4 r = malloc (100); // Returns address 0x8049080
5
6 strncpy (r, argv[3], 99); r[99] = NULL;
7 printf ("Your account number is %s\n", r);
8
9 strncpy (p, argv[1], 99); p[99] = NULL;
10 printf ("Method is %s", p);
11 free (p);
12 free (r);
13
14
15
16
17 if (!strncmp (&r[8], ‘‘0’’, 1)) {
18 q = p;
19 snprintf (q, 256, "%s Welcome to your account, %s\n", argv [1], argv[2]);
20 printf ("Thanks for using online banking! %s", q);
21 }
22
23 p = malloc (100);
24 r = malloc (100);
25 if (strcmp (q, "System Admin")) {
26 free (q);
27 } else {
28 authnticate_admin (q)
29 }
30 free (p);
31 free (r);
32 }

Figure 2: Code for the contrived web server in problem 2

The server is running on an x86 based Unix system. On the target Unix system, the OS and the C standard
library provide functions to handle variable amounts of memory in a dynamic way. This allows programs to
dynamically request memory blocks from the system. The operating system only provides a very low-level
system callbrk to change the size of a big memory region, which is known as theheap.

On top of this system call the C library’smalloc interface is implemented, which provides a layer between

the application and the system call. It can dynamically split the large single block into smaller ’chunks’, free
those chunks on request of the application and avoid fragmentation while doing so. One of the goals of an
implementation of C library function is to be fast and space efficient. Here is the specific scheme used on the
target system.

Each ’chunk’ is a unit of memory allocation. Chunks are of different sizes; the library implementation always
manages chunks of sizes that are a power of 2. For this problem, you can assume that each chunk has size of
128 bytes. Internally, a chunk has the following data type asshown in Figure 3.

struct metadata {
struct chunk * next; // Points to next chunk in free list, or is NULL.
struct chunk * prev; // Points to previous chunk in free list, or is NULL.
};

struct chunk {
union {
struct metadata mdata;
char data [128];
} content;
}

Figure 3: Type definition for a ’chunk’

All free chunks are stored on adoubly-linked list, called the “free list”. A globalfree list head pointer is
the head of the free list, and it always points to the first nodeon the free list. When an allocated chunk is in use,
the data of the user is stored in the fielddata of the unioncontent . Themdata field (free list prev and next
pointers) are meaningful only when the chunk is on the free list. Therefore, to conserve space, the data and the
associated metadata share locations in memory using aunion , as shown in Figure 3.

The target implementation of the C library uses a first-fit algorithm, i.e it finds the first block on the free-list that
is sufficient to serve an allocation request. The target C library implementation offree always adds the chunks
beingfree ’d as the second element of the free list (immediately after the first element). The relevant code for
malloc andfree is shown in figure 5 and figure 6 respectively. You must first look at these implementations
to be able to solve this problem.

0x8049000

0x8049004

0x8049008

128 Bytes
 Chunk

0x8049080

128 Bytes
 Chunk

. . . .

free_list_head

0x8049000

NEXT NEXT NEXT

PREV (NULL) PREV PREV

0x8049100

Figure 4: State of the free list at the start ofmain .

void * malloc (int size) {

/ * find_first : It traverses the free list in the forward direct ion,

* with the starting address of the first chunk provided as the f irst

* argument. It returns the pointer to the first chunk that is la rge

* enough to hold the request, or NULL if it fails.

* /
void * p = find_first (free_list_head, size);

/ * delete_from_list : It removes chunk pointed to by the first a rgument,

* from the free list. If the argument is the address of the first

* chunk on the free list, it also sets the free_list_head appro priately.

* /
delete_from_list (p);
return p;

}

Figure 5: Code formalloc in the target C library.

/ * add_chunk_after_current : Adds chunk pointed to by NEWNODE ,

* immediately after CURRENT. If CURRENT is NULL, it adds NEWNO DE

* as the first node in free list.

* @ current : Pointer to the chunk after which the new chunk

* has to be inserted

* @ newnode : Pointer to the new chunk

* /

void add_chunk_after_current (struct chunk * current, struct chunk * newnode) {
if (current) {

newnode->next = current->next;
if (current->next) current->next->prev = newnode;
current->next = newnode;
newnode->prev = current;

}
else { ... // Add ’newnode’ as the first node}

}

int free (void * p) {

/ * Adds p as the second element on free list. * /
add_chunk_after_current (free_list_head, p);
return 0;

}

Figure 6: Code forfree in the target C library

Before the server makes its first allocation, the free list isas shown in Figure 4. The first free chunk of 128 bytes
is at address0x8049000 . The second free chunk is at 0x8049080. Notice that these twochunks happened to
be placed adjescent to each other in memory (0x8049080 - 0x8049000 = 128).

• (2 points) Write psuedo-code for thedelete from list operation (invoked in figure 5), to remove an

element from the doubly-linked list. Your psuedo-code should have no more than 8 statements.

• (3 points) Draw the state of the free list at line number 18, using a diagram similar to figure 4. Show the
base addresses of the chunks in the free list.

Keep in mind that for this problem, all allocation requests are of size 100 and chunks are always 128
bytes – therefore, the functionfind first in Figure 5 will always end up returning the current value
of free list head .

Hint : You will need to understand the implementations ofmalloc andfree in figure 5 and figure 6.

• (4 points) Line 19 in Figure 2 has a buffer overflow that allowsoveflows across chunks. If you look
carefully, you can see that an attacker can exploit it to write aNULLvalue toanymemory location of his
choice. Show the contents of the input strings (passed asargv[1]), that exploits this bug to write a 4
byte value0x00000000 at address0xAAAAAAAA.

You should avoid showing irrelevant bytes in the input; for instance, you should use the notation “... 80
bytes ...” to denote 80 bytes of random values. But, you should show all the needed values for full credit. If
you want to represent a hexadecimal byte value in ASCII, say0xAA, you should show the ASCII notation
in your answer as\xAA .

State the source line on Figure 2 where the exploit will be triggered. You may include an explaination, in
no more than 8 sentences, for your approach.

Hint : Look at the code you wrote in the first subpart, and identify anoperation that gives the attacker a
write-anything-anywhere capability, if she controls all values in chunk being deleted.

• (5 points) Suppose we fix the heap overflow on line 19 – we replace the line with :

snprintf(q, 99, "%s Welcome to your account, %s", argv[1], a rgv[2]); .

There is yet another bug – look carefully at the line 11, 18 and26 in figure 2. What is the bug?

An attacker can exploit it to write the value0x8049000 to any memory location of his choice using
this second bug. Show the contents ofargv[1] necessary to write the value0x8049000 to address
0xAAAAAAAA.

Hint : Analyze at the functionadd chunk after current carefully, and find the statement that lets
the attacker write a fixed value to an arbitrary location if she controls the contents of the two chunks passed
in as parameters.

• (2 points) Exploiting the bug on line 26 requires the programcontrol flow to execute statements on line
3, 4, 11, 12, 18, 19, 23, 24, and 26. State the constraints thatthe program inputs should satify, to cause
the control flow to execute take thetrue branches at the conditional statements on line 17 and line 25.
Note that, in general, these constraints could be very complex and extracting them manually may be hard
in practice – this is why programmers are likely to miss such bugs during testing.

3 Defenses

1. Canary Based Return Address Protection. (3 points) Write the psuedo-code of a vulnerable function that is
susceptible to return address corruption, even though the compiler uses a canary based return address protection
scheme.

2. Memory Layout Randomization. (2 points) An OS vendor enforces a page based alignment for the heap, stack,
and code sections of a program. On the 32-bit x86 machine, each page is 4096 bytes. The OS vendor employs
memory layout randomization using only a runtime loader modification – each time a binary is loaded in the
process address space, the loader selects a random page-aligned address for the code, data and heap segments.

The attacker discovers an exploitable stack-based buffer overflow. The attacker decides to exploit it using a
return-to-libc attack. He has to correctly guess the bufferstart address, as well as the location ofexecve
system call (which is the target of the control transfer in his attack). How many guesses are necessary, in
the worst case, for the attacker to ensure a successful attack? Show how you arrive at your answer with an
explaination at most 2 sentences long.

