
1

Runtime Defenses

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Memory-safety vulnerabilities

– Buffer overflow
– Format string vulnerability
– Integer overflow vulnerability

• Clarification

3

More Memory Safety Vulnerability
• Double-free

– malloc does not do sufficient checking
– Corrupts free block list
– Write to arbitrary memory location
– “Once upon a free …”, Phrack, 11(57), Aug

2001

4

Impact of Memory-safety Vulnerabilities

• Modify security-critical data
• Control hijacking: 2 requirements

– Arrange suitable code to be available in
program’s address space

» Code injection
• Stack
• Heap
• Static data area

» Existing code
• Libc: E.g. exec(arg)

– Control flow corruption
» Return address & base pointer (activation records)
» Function pointers
» Longjmp buffers

5

Defenses & Countermeasures - I

• Type safe languages (Java, ML). DO NOT use
C/C++
– Legacy Code
– Practical ???

• Secure Coding
– Avoid risky programming constructs

» Use fgets instead of gets
» Use strn* APIs instead of str* APIs
» Use snprintf instead of sprintf and vsprintf
» scanf & printf: use format strings

– Never assume anything about inputs

6

Defenses & Countermeasures - II

• Mark stack as non-execute.
• Run time checking for memory safety:

Purify, array bounds checking (Jones & Kelly).
• Run time overflow detection:

Stackguard
• Attack mitigation:

– Randomization techniques

7

Marking stack as non-execute

• Basic stack exploit can be prevented by marking
stack segment as non-executable or
randomizing stack location.
– Code patches exist for Linux and Solaris.

• Problems:
– Does not block more general overflow exploits:

» Overflow on heap: overflow buffer next to func pointer.
– Some apps need executable stack (e.g. LISP interpreters).

8

Purify

• A tool that developers and testers use to find
memory leaks and access errors.

• Detects the following at the point of occurrence:
– reads or writes to freed memory.
– reads or writes beyond an array boundary.
– reads from uninitialized memory.

9

Purify - Catching Array Bounds Violations

• To catch array bounds violations, Purify
allocates a small "red-zone" at the
beginning and end of each block returned
by malloc.

• The bytes in the red-zone recorded as
unallocated.

• If a program accesses these bytes, Purify
signals an array bounds error.

• Problem:
– Does not check things on the stack
– Extremely expensive

10

Jones & Kelly: Array Bounds Checking for C

• A gcc patch that does full array bounds
checking

• Do not change representation of pointers
– Compiled programs compatible with other gcc

modules
• Derive a base pointer for each pointer

expression, check attributes of that pointer to
determine whether the expression is within
bounds

• High performance overhead

11

Administravia
• Office hour

– If you have any questions or any feedback, pls come
by

• Background
– Lectures try to be self-contained

• Group partner
• Project 1

12

Run time detection: StackGuard

• Solution: StackGuard
– Run time tests for stack integrity.
– Embed “canaries” in stack frames and verify their

integrity prior to function return.

argretebplocal canaryargretebplocal canary

Frame 1Frame 2

13

Canary Types

• Random canary:
– Choose random string at program startup.
– Insert canary string into every stack frame.
– Verify canary before returning from function.
– To corrupt random canary, attacker must learn

the random string.

14

StackGuard (Cont.)

• StackGuard implemented as a GCC patch.
– Program must be recompiled.

• Low performance effects: 8% for Apache.

• Problem
– Only protect stack activation record (return address, saved

ebp value)

15

Randomization Techniques

• For successful exploit, the attacker needs to know
where to jump to, i.e.,

– Stack layout for stack smashing attacks
– Heap layout for code injection in heap
– Shared library entry points for exploits using shared library

• Randomization Techniques for Software Security
– Randomize system internal details

» Memory layout
» Internal interfaces

– Improve software system security
» Reduce attacker knowledge of system detail to thwart exploit
» Level of indirection as access control

16

Predictable Memory Layout for Linux Application Process

0x00000000
0x08048000code

static data

bss

heap

shared library

stack

kernel space

0x40000000

0xC0000000

0xFFFFFFFF

17

Randomize Memory Layout (I)
• Randomize stack starting point

– Modify execve() system call in Linux kernel
– Similar techniques apply to randomize heap starting point

• Randomize heap starting point
• Randomize variable layout

18

Randomize Memory Layout (II)

• Handle a variety of memory safety vulnerabilities
– Buffer overruns
– Format string vulnerabilities
– Integer overflow
– Double free

• Simple & Efficient
– Extremely low performance overhead

• Problems
– Attacks can still happen

» Overwrite data
» May crash the program

– Attacks may learn the randomization secret
» Format string attacks

