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Review
• Memory-safety vulnerabilities

– Buffer overflow
– Format string vulnerability
– Integer overflow vulnerability

• Clarification
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More Memory Safety Vulnerability
• Double-free

– malloc does not do sufficient checking
– Corrupts free block list
– Write to arbitrary memory location
– “Once upon a free …”, Phrack, 11(57), Aug 

2001
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Impact of Memory-safety Vulnerabilities 

• Modify security-critical data
• Control hijacking: 2 requirements

– Arrange suitable code to be available in 
program’s address space

» Code injection
• Stack
• Heap
• Static data area

» Existing code
• Libc: E.g. exec(arg)

– Control flow corruption
» Return address & base pointer (activation records)
» Function pointers
» Longjmp buffers

5

Defenses & Countermeasures - I

• Type safe languages (Java, ML). DO NOT use 
C/C++
– Legacy Code
– Practical ???

• Secure Coding
– Avoid risky programming constructs

» Use fgets instead of gets
» Use strn* APIs instead of str* APIs
» Use snprintf instead of sprintf and vsprintf
» scanf & printf: use format strings

– Never assume anything about inputs
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Defenses & Countermeasures - II

• Mark stack as non-execute. 
• Run time checking for memory safety:  

Purify, array bounds checking (Jones & Kelly).
• Run time overflow detection: 

Stackguard
• Attack mitigation:

– Randomization techniques



7

Marking stack as non-execute

• Basic stack exploit can be prevented by marking 
stack segment as non-executable or 
randomizing stack location.
– Code patches exist for Linux and Solaris.

• Problems:
– Does not block more general overflow exploits:

» Overflow on heap:  overflow buffer next to func pointer.
– Some apps need executable stack (e.g. LISP interpreters).
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Purify

• A tool that developers and testers use to find 
memory leaks and access errors.

• Detects the following at the point of occurrence:
– reads or writes to freed memory.
– reads or writes beyond an array boundary.
– reads from uninitialized memory.
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Purify - Catching Array Bounds Violations

• To catch array bounds violations, Purify 
allocates a small "red-zone" at the 
beginning and end of each block returned 
by malloc.

• The bytes in the red-zone recorded as 
unallocated.

• If a program accesses these bytes, Purify 
signals an array bounds error. 

• Problem:
– Does not check things on the stack
– Extremely expensive
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Jones & Kelly: Array Bounds Checking for C

• A gcc patch that does full array bounds 
checking

• Do not change representation of pointers
– Compiled programs compatible with other gcc

modules
• Derive a base pointer for each pointer 

expression, check attributes of that pointer to 
determine whether the expression is within 
bounds

• High performance overhead
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Administravia
• Office hour

– If you have any questions or any feedback, pls come 
by

• Background
– Lectures try to be self-contained

• Group partner
• Project 1
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Run time detection: StackGuard

• Solution: StackGuard
– Run time tests for stack integrity. 
– Embed “canaries” in stack frames and verify their 

integrity prior to function return.

argretebplocal canaryargretebplocal canary

Frame 1Frame 2
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Canary Types

• Random canary:
– Choose random string at program startup.
– Insert canary string into every stack frame.
– Verify canary before returning from function.
– To corrupt random canary, attacker must learn 

the random string.

14

StackGuard (Cont.)

• StackGuard implemented as a GCC patch.
– Program must be recompiled.

• Low performance effects: 8% for Apache.

• Problem
– Only protect stack activation record (return address, saved 

ebp value)
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Randomization Techniques

• For successful exploit, the attacker needs to know 
where to jump to, i.e.,

– Stack layout for stack smashing attacks
– Heap layout for code injection in heap
– Shared library entry points for exploits using shared library

• Randomization Techniques for Software Security
– Randomize system internal details

» Memory layout
» Internal interfaces

– Improve software system security 
» Reduce attacker knowledge of system detail to thwart exploit
» Level of indirection as access control
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Predictable Memory Layout for Linux Application Process

0x00000000
0x08048000code

static data

bss

heap

shared library

stack

kernel space

0x40000000

0xC0000000

0xFFFFFFFF
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Randomize Memory Layout (I)
• Randomize stack starting point

– Modify execve() system call in Linux kernel
– Similar techniques apply to randomize heap starting point

• Randomize heap starting point
• Randomize variable layout
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Randomize Memory Layout (II)

• Handle a variety of memory safety vulnerabilities
– Buffer overruns
– Format string vulnerabilities
– Integer overflow
– Double free

• Simple & Efficient
– Extremely low performance overhead

• Problems
– Attacks can still happen

» Overwrite data
» May crash the program

– Attacks may learn the randomization secret
» Format string attacks


