
1

Overview of Security and Symmetric-key
Encryption

Dawn Song
dawnsong@cs.berkeley.edu

2

Outline
• What is security about?
• How to evaluate security of systems?
• Introduction to crypto (I): symmetric key

encryption

3

What is Computer Security about?

• Computing in the presence of an adversary!
– An adversary is the security field’s defining

characteristic
• Reliability, robustness, and fault tolerance

– Dealing with Mother Nature (random failures)
• Security

– Dealing with actions of a knowledgeable attacker
dedicated to causing harm

– Surviving malice, and not just mischance
• Wherever there is an adversary, there is a

computer security problem!

4

Computer Security History

• Early history interwoven with military apps
–First big users of computers
–First to worry seriously about the potential for

misuse
• Terminology has military connotations:

–Attacker who is trying to attack computer
systems

–Defenders working to protect their system from
these threats

5

Analyze to Learn!
• We’re going spend a lot of time studying

attackers and thinking about how to break into
systems

– Why spread knowledge that will help bad guys be more
effective?

• To protect a system, you have to learn how it can
be attacked

– Civil engineers learn what makes bridges fall down so
they can build bridges that last

– Software engineering is similar
• Security is the same and different!

– Why?

6

Challenges in Securing Systems
• Similar:

– Analyze previous successful attacks
• But, deploy a new defense, they respond, you

build a better defense, they respond, you…
– Need to find ways to anticipate kinds of attacks

• Different:
– Attackers are intelligent (or some of them are)
– Attacks will change and get better with time
– Have to anticipate future attacks

• Security is like a game of chess
– Except the attackers often get the last move!

7

Need to Secure System before Depolyment
• A deployed system is very hard to change

– Serious consequences if attackers find a security
hole in a widely deployed system

• Goal: Predict in advance what attackers
might do and eliminate all security holes

• Reality: Have to think like an attacker
• Thinking like an attacker is not always easy

– Can be fun to try to outwit the system
– Or can be disconcerting to think about what could

go wrong and who could get hurt
• What if you don't anticipate attacks?

– Analog cellular phones in the 80’s and 90’s

8

Real-World Example: Analog Cellular
• 1970’s: analog cellular had no security

– Phones transmit ID/billing info in the clear
– Assumption: attackers wouldn't bother to

assemble equipment to intercept info…
• Attackers built “black boxes” to intercept

and clone phones for fraudulent calling
– Where’s the best place to intercept?
– Cellular operators completely unprepared

• Early 90's, US carriers losing >$1B/yr
– 70% of LD cellular calls placed from downtown

Oakland on Fri nights fraudulent
• Problems: huge capital investment/debt, 5–

10 yrs & huge replacement cost

9

Lesson Learned
• Failing to anticipate types of attacks, or

underestimating the threat, can be costly
• Security design requires studying attacks

– Security experts spend a lot of time trying to
come up with new attacks

– Sounds counter-productive (why help the
attackers?), but it is better to learn about
vulnerabilities before the system is deployed
than after

• If you know about the possible attacks in
advance, you can design a system to
resist those attacks

– But, anything else is a toss of the dice…

10

A Process for Security Evaluation
• How to evaluate the security of a system?

– A three-step process

• Step I: security goals
– What properties do we want the system to have,

even when it is under attack?
– What are we trying to protect from the attacker?
– Or, to look at it the other way around, what are we

trying to prevent?

11

Some Common Security Goals
• Confidentiality:

– Private information that we want to keep secret from
an adversary (password, bank acct balance, diary
entry, …)

– Anything we want to prevent adversary from learning
• Integrity:

– Want to prevent adversary from tampering with or
modifying information

• Availability:
– System should be operational when needed
– Must prevent adversary from taking the system out of

service at inconvenient times

12

Example: CS161 Grades Database?

• One obvious goal is protecting its integrity
– Don’t want you to be able to give yourself an A+

merely by tampering with grade database
• Federal law and university rules require us to

protect its confidentiality
– No one else can learn what grade you are getting

• We probably also want some level of availability
– So you can check your grades to date and we can

calculate grades at the end of the semester

13

Security Goals

• How to identify security goals?
–Highly application-dependent
– If someone figures out how to violate this

goal, would it be a security breach?
» If yes, you've found a security goal!

14

Step 2: Threat Model and Assessment

• What kind of threats might we face?
• What kind of capabilities might we expect the

adversaries to have?
• What are the limits on what the adversary might

be able to do to us?
• What are their motivations and incentives?

15

Step 3: Security Analysis
• Is there an attack within the threat model

that can violate the security goals?
– We’ll talk about this a lot in class

16

Summary: Security Evaluation
• Step 1: Identify security goals
• Step 2: Perform a threat assessment
• Step 3: Security analysis

17

Administravia
• Staff shortage

– No reader
– Pls be considerate of the under-staffed situation

• If you plan to drop the course, pls do so soon
– We’ll try to let seniors on the waitlist in
– Others can take it next time

• How many have taken 170, 162, 122?
– Students have diverse background
– Pls be understanding: no one-size fits all

18

3-min Stretch Break

19

Cryptology
• Cryptology is the study of Cryptography & Cryptanalysis
• Cryptography

– Literally:
Crypt: secret, graphia: writing---Cryptography: the study of how to
send secret messages

– Formally:
The study of mathematical techniques to enforce security
properties: Confidentiality, integrity, etc.

• Cryptanalysis is the study of how to break cryptographic
systems

20

Brief History of Cryptography (I)
• First phase: manual

– Caesar cypher (Romans)
» Permute the alphabet by shifting each letter forward by a

fixed amount
» Caesar cipher with a shift by 3:

• What’s the original message for “fubswrjudskb”?

– Clearly not very secure
• Second phase: mechanical era

– Enigma machine: a German project to create a
mechanical encryption/decryption device

– British effort to break the code
» Important for WWII, estimate shortening war by 1 year

21

Brief History of Cryptography (II)
• Third phase: Modern Cryptography

– Relying on mathematics and electronic computers
– Early roots by Claude Shannon

» E.g., One-time pad
– DES by NIST (1970’s)
– …

22

Basic Communication Setting
• Introducing security protocol participants

– Alice (usually the protocol initiator)
– Bob, Alice’s friend
– Eve the eavesdropper (passive attacker)
– Mallory the malicious attacker (active attacker)

• Basic setting

Alice BobMallory

Eve

23

Security Goal
• Confidentiality

– Attacker cannot learn the content of the message

• Integrity
– Attacker cannot alter the content of the message

24

Symmetric-key Model
• Solution I for confidentiality

– Symmetric key encryption

• Encryption key = decryption key
• Encryption: EK(plaintext) = ciphertext
• Decryption: DK(ciphertext) = plaintext
• We write {plaintext}K for EK(plaintext)

Encrypt DecryptPlaintext Ciphertext Plaintext

Key Key

25

Threat Model

• Known ciphertext (ciphertext only)
– Attacker only has a copy of some ciphertext

• Known plaintext
– Attacker obtains ciphertext and corresponding

plaintext
• Chosen plaintext attack (CPA)

– Attacker can choose plaintext that is going to be
encrypted and obtains ciphertext

• Chosen Ciphertext attack (CCA)
– In addition to chosen plaintext attack, attacker can

choose ciphertext and obtains corresponding plaintext

26

One-time Pad
• Alice & Bob share an n-bit secret key

K = K1…Kn, where bits K1,…,Kn chosen randomly
• Alice wishes to send n-bit msg M = M1…Mn
• Desired properties of the encryption scheme:

– Can encrypt: map M to C = C1…Cn
– Given knowledge of K, easy to decrypt: get M from C
– Eve, who doesn’t know K, should learn no info about M

• Encryption scheme: C = M ⊕ K
– Cj = Mj ⊕ Kj

27

XOR Properties
• XOR truth table

• Some XOR properties
– a ⊕ a = 0
– a ⊕ b ⊕ b = a

011
101
110
000

a ⊕ bba

28

How Secure is One-time Pad?
• What may Eve learn about M by seeing C?
• What if Eve knew something about M apriori?

– Does Eve learn anything in addition?
• One-time pad is secure

– Eve learns no additional info about M by seeing C
– No matter what M is, C is a uniformly random n-bit string

• Proof
– For a given M, any C is possible by picking the unique K:

K = M ⊕ C
– Each such K is equally likely
– Thus C is equally likely to be any n-bit string

29

Advantage of One-time Pad

• No other assumptions required for security
– Attacker without computation limitation

30

Disadvantage of One-time Pad
• K needs be the same length as the message &

can’t be reused

• What happens if reuse K?
– C = M ⊕ K
– C’ = M’ ⊕ K
– Eve learns M ⊕ M’

31

Stream Cipher
• Pseudo-random generator

– F(k,i) = ri
– k is secret
– Attacker cannot distinguish r1, r2, … ri, from a

sequence of random numbers
– Stream ciphers can be constructed using

block ciphers
» See later

• Encrypt using stream ciphers
– Alice and Bob share k
– Alice wishes to send n-bit msg M = M1…Mn
– Ci = Mi ⊕ F(k,i)
– Practical “one-time pad”

32

Block Cipher
• Alice & Bob share a k-bit random key K
• Encrypt an n-bit msg M into n-bit ciphertext C
• Encryption function E:

– C = E(K, M)
• Decryption function D:

– M = D(K, C)

33

DES
• Data Encryption Standard (DES)

– An example of a block cipher
– Designed by IBM in 1974 responding to NIST request
– Standardized in 1979

• Designed for fast VLSI implementation
• Key length 56, block length 64

DES
Encryption

64 bit M 64 bit C

56 bits

34

DES Overview

Permutation

Permutation

Swap

Round 1

Round 2

Round 16

Generate keys
Initial Permutation
48-bit K1

48-bit K2

48-bit K16

Swap 32-bit halves

Final Permutation

64-bit Output

48-bit K164-bit Input
56-bit Key

…...

35

A DES Round

48 bits

32 bits

32 bits Ln 32 bits Rn

32 bits Ln+1 32 bits Rn+1

E

S-Boxes

P

48 bits
Ki

One Round
Encryption Mangler

Function

⊕

⊕

36

Feistel Cipher Encryption

A B

C D

mangler K

⊕

37

Feistel Cipher Decryption

A B

C D

mangler K

⊕

38

Why Feistel?
• So mangler function f doesn’t need to be

reversible
– enc(A,B): C=B, D=A ⊕ f(B)
– dec(C,D): B=C,

A=D ⊕ f(C), because A ⊕f(B) ⊕f(B) = A
• DES is Feistel

39

How Secure is DES?
• Best practical attack known is exhaustive key search

– 255 (due to symmetry in key structure)
• 1977: Diffie & Hellman: $20,000,000 machine that breaks

DES key in 1 day
• 1993: Wiener: $100,000 machine that breaks DES key in

1.5 days
• 1998: EFF’s DES Cracker

– EFF spent $250,000 to build it
– Tests 88*109 keys per second
– Solved DES Challenge II-2 in 56 hours

• 1999: DES Cracker + distributed.net (100,000 computers)
– Tests 254*109 keys per second
– Solved DES Challenge III in 22 hours

40

Advanced Encryption Standard AES

• 1998 NIST announced a competition for a new cipher
– DES block length is too short

• Winning cipher was Rijndael (pronounced Rhine-doll)
– Belgian designers: Joan Daemen & Vincent Rijmen
– Adopted by NIST as Advanced Encryption Standard (AES), Nov

2001
• Officially adopted for US government work, but voluntarily

adopted by private sector
• Block length 128, Key size: 128, 192, or 256
• AES is not Feistel

– All functions are reversible
• High-speed cipher

– About 16 clock cycles/byte on modern 32-bit CPUs
– That’s 200 MByte/s on a 3.2 GHz P4!

