Asymmetric-key Encryption

Dawn Song
dawnsong@cs.berkeley.edu

Review
• Introduction to cryptography
• Symmetric-key encryption
• One-time pad
• Block cipher
 – DES
 » Fiestel Networks
 – AES

Today
• Modes of operation for Block ciphers
• Administrative matters
• Modular Arithmetic
• Asymmetric-key encryption
Block-cipher Modes of Operation

- Block-cipher has fixed block size
- How to encrypt arbitrary length msgs using a block cipher?
- How to ensure the same plaintext when encrypted/sent twice, will result in different ciphertexts?
- Different block-cipher modes of operation
 - Encryption scheme
 - Randomized, i.e., flips a coin
 - Stateful, i.e., depending upon state info
 - Decryption scheme
 - Neither randomized nor stateful
 - Why?

Examples of Block-Cipher Modes of Operation

- ECB: Electronic code book
- CBC: Cipher block chaining
- OFB: Output feedback
- CTR: Counter mode

Electronic Code Book (ECB) Mode

- Disadvantages and issues to note
 - Same plaintext always corresponds to same ciphertext
 - Traffic analysis yields which ciphertext blocks are equal → know which plaintext blocks are equal
Cipher Block Chaining (CBC) Mode
- \(C_j = \{ P_j \oplus C_{j-1} \} \)
- \(C_0 = \text{IV (initialization vector)} \)

Interesting fact
- Altered ciphertext only influences two blocks

Output Feedback (OFB) Mode
- \(X_1 = \text{IV (initialization vector)} \)
- \(X_j = (X_{j-1})_K \)
- \(C_j = X_{j+1} \oplus P_j \)

- Altered ciphertext only influences single block

Counter Mode (CTR)
- \(X_j = \text{IV called initialization vector} \)
- \(X_j = X_1 + j - 1 \)
- \(C_j = (X_j)_K \oplus P_j \)

- Advantages
 - Easy to parallelize
 - Altered ciphertext only influences single block
Adminstrivia

- Waitlist

Modular Arithmetic

- $a + b \mod s$
- $a*b \mod s$
- $a^b \mod s$
 - how to compute $a^{25} \mod s$?
 - Repeated squaring
 - $a^{16} * a^{8} * a \mod s$

Modular Division

- How to compute $1/a \mod s$?
- What does it mean?
 - $ax \equiv 1 \mod s$
- Can it always be computed?
 - iff $gcd(a,s) = 1$
- How?
 - Extended Euclidean algorithm
Euclidean Algorithm

- Compute \(\gcd(a, b)\)
- Lemma if \(a > b\), then \(\gcd(a, b) = \gcd(a \mod b, b)\)
 - Why?
- Euclid algorithm:
 - \(b \leq a\),
 - \(\gcd(a, b) = \text{Euclid}\ (b, a \mod b)\) if \(b \neq 0\)
 - \(a\) if \(b = 0\)

Extended Euclidean Algorithm

- For any positive integers \(a, b\), the extended Euclidean algorithm returns integers \(x, y\) such that \(ax + by = \gcd(a, b)\)
- How to use it to compute \(x\) such that \(ax \equiv 1 \mod s\)?
- \(\gcd(a, s) = 1\), thus can compute \(x, y\) s.t. \(ax + sy = 1\)
 - Thus, \(ax \equiv 1 \mod s\)

Asymmetric-key Crypto

- Symmetric cryptography: both parties share the same key
 - Secret key (or shared key) only known to communicating parties
- Asymmetric cryptography: each party has a public and a private key
 - Public key known to everyone
 - Private key only known to owner
- Requirements for secure communication
 - Symmetric crypto: key is secret and authentic
 - Asymmetric crypto: private key is secret and public key is authentic
Advantage of Public-Key Crypto

- Consider N parties, how can any pair of them establish a secret key?
 - To use symmetric-key crypto, requires secret and authentic channel to set up shared secret key
 - Need $O(N^2)$ keys
 - Key management is challenging
- Public-key crypto advantage
 - Each party only needs to know N-1 authentic public keys

Asymmetric-key Encryption

- encryption-Key ≠ decryption-Key
- Alice has public key: pub_key, private key: priv_key
- Bob wants to send Alice message M
 - $C = E(\text{pub}_\text{key}, M)$
 - $M = D(\text{priv}_\text{key}, C)$

Asymmetric cryptography

- encryption-Key ≠ decryption-Key
- We cannot simply run operations backwards
- Some things are hard to reverse
 - Multiplication
 - Easy to multiply two large primes
 - Hard to factor
 - Factoring up to 663 bits (200 digits) now demonstrated
 - Intensive computing; record set in May 2005
 - More efficient factoring methods unknown
Using hard problems to make crypto

• Gauss (building on work by Fermat) proved
 - If p and q are primes and
 - If m is not a multiple of p or q
 - Then \(m^{(p-1)(q-1)} = 1 \mod pq \)

• Example, \(p=3, q=5, pq = 15, (p-1)(q-1) = 8 \)
 - \(1^8 = 1 \mod 15 \)
 - \(2^8 = 256 \mod 15 \)
 - \(4^8 = 65536 \mod 15 \)
 - \(7^8 = 5764801 \mod 15 \)
 - \(8^8 = 16777216 \mod 15 \)
 - \(11^8 = 214358881 \mod 15 \)
 - \(13^8 = 815730721 \mod 15 \)
 - \(14^8 = 1475789056 \mod 15 \)

RSA

• Rivest, Shamir, Adleman (1978 – published 1979)

• Idea:
 - Let p, q be large secret primes, \(N = pq \)
 - Given e, find d, such that \(ed = 1 \mod \varphi(N) \), where \(\varphi(N) = (p-1)(q-1) \)
 - public key: e, N
 - private key: d, p, q
 - Encryption: \(c = E(m) = m^e \mod pq \)
 - Decryption: \(D(c) = c^d \mod pq \)
 - So \(D(E(m)) = m^{ed} \mod pq = m^{(p-1)(q-1)+1} \mod pq = m \)

5-min Break

• Is RSA encryption secure?
Discussion (I)

- Mallory knows e, so why doesn’t she simply compute the eth root to recover the plaintext? E.g., \((M^e \mod N)^{1/e} = M\)?
- What if Mallory can find \(\phi(N)\)?
 - Then she can compute secret value d
- Is finding \(\phi(N)\) equivalent to factoring?
 - Yes! Consider the equation \((X-p)(X-q) = 0\)
 - Note: \(N - \phi(N) + 1 = p+q\)
 - \(X^2 - (p+q)X + pq = X^2 - (N - \phi(N) + 1)X + N\)
 - p and q can be found by solving quadratic equation
- RSA assumption: finding eth root mod N is hard when factorization of N is unknown

Discussion (II)

- Short plaintext attack:
 - Consider RSA with n of size 1024 bits, e=3
 - Let’s encrypt AES key, secure?
 » No! 128-bit AES key raised to third power only results in 384-bit #,
 mod n does not reduce the result, attacker can simply compute cube root over integers
- What other security issues does RSA have?
 - E.g., deterministic, same plaintext always encrypt to same ciphertext

How to Fix?

- Padding:
 - Pad short plaintext to block size
 - Add randomness
- Can’t just do random padding
 - E.g., given data D, pad message m to be m= 00 | 02 | r | 00 | D, where r is a random number of appropriate length
 - Bleichenbacher found an attack (1998)
- Standard: OAEP (Optimal Asymmetric Encryption Padding)
 - With a formal proof of security