
1

Common Implementation Flaws

Dawn Song
dawnsong@cs.berkeley.edu

2

Goals for Today
• Next few lectures are about software security

– Can have perfect design, specification, algorithms,
but still have implementation vulnerabilities!

• Examine common implementation flaws
– Many security-critical apps use C, and C has

peculiar pitfalls
• Implementation flaws can occur with improper

use of language, libraries, OS, or app logic
• Real goal:

– Put on the attacker’s hat: how to exploit a vulnerable
program for fun & profit!

3

Simple Example
• char buf[80];
void vulnerable() {

gets(buf);
}

• gets() reads all input bytes available on stdin,
and stores them into buf[]

• What if input has more than 80 bytes?
– gets() writes past end of buf, overwriting some other

part of memory
– This is a bug!

• Results?
– Program crash/core-dump?
– Much worse consequences possible…

4

Modified Example
• char buf[80];
int authenticated = 0;
void vulnerable() {

gets(buf);
}

• A login routine sets authenticated flag only if
user proves knowledge of password

• What’s the risk?
–authenticated stored immediately after buf
– Attacker “writes” data after end of buf

• Attacker supplies 81 bytes (81st set non-zero)
– Makes authenticated flag true!
– Attacker gains access: security breach!

5

More Serious Exploit Example
• char buf[80];
int (*fnptr)();
void vulnerable() {

gets(buf);
}

• Function pointer fnptr invoked elsewhere
• What can attacker do?

– Can overwrite fnptr with any address, redirecting
program execution!

• Crafty attacker:
– Input contains malicious machine instructions,

followed by pointer to overwrite fnptr
– When fnptr is next invoked, flow of control re-directed

to malicious code
• This is a malicious code injection attack

6

Buffer Overrun Vulnerabilities
• Most common class of implementation flaw (used

to be)
– Web application implementation flaw is taking over

• C does not guarantee type safety
– Programmer exposed to bare machine
– No bounds-checking for array or pointer accesses

• Buffer overrun (or buffer overflow) vulnerabilities
– Out-of-bounds memory accesses used to corrupt

program’s intended behavior

7

Buffer Overrun Exploits
• Demonstrate how adversaries might be able to

use a buffer overrun bug to seize control
– This is very bad!

• Consider: web server receives requests from
clients and processes them

– With a buffer overrun in the code, malicious client
could seize control of server process

– If server is running as root, attacker gains root
access and can leave a backdoor

» System has been “0wned”

• Buffer overrun vulnerabilities and malicious
code injection attacks are primary/favorite
method used by worm writers

8

Buffer Overflow Exploit History

• First Internet worm (Morris worm)
spread using several attacks
–One used buffer overrun to overwrite

authenticated flag in in.fingerd
(network finger daemon)

• Attackers have discovered much
more effective methods of malicious
code injection…

9

C Program Memory Layout
• Text region (program’s executable code)
• Heap, (dynamically allocated data)

– Grows/shrinks as objects allocated/freed
• Stack (local variable storage)

– Grows/shrinks with function calls/returns

• Function call pushes new stack frame on stack
– Frame includes space for function’s local vars
– Intel (x86) machines stack grows “down”
– Stack pointer (SP) reg points to current frame
– Stack extends from SP to the end of memory

0xFF…F0x00…0

heap … stacktext region

10

C Program Execution
• Instruction pointer (IP) register points to next

machine instruction to execute
• Caller sets up arguments on stack
• Procedure call instruction:

– Pushes current IP onto stack (return addr)
– Jumps to beginning of function being called

• Compiler inserts prologue into each function
– Pushes current SP value of SP onto stack
– Allocates stack space for local variables by

decrementing SP by appropriate amount
• Function return:

– Old SP and return address retrieved from stack, and
stack frame popped from stack

– Execution continues from return address

11

Stack Smashing Attack
• void vulnerable() {

char buf[80];
gets(buf);

}
• When vulnerable() is called, stack frame

is pushed onto stack

• Given “too-long” input, saved SP and
return addr will be overwritten

• This is the stack smashing attack!

…caller’s stack framebuf saved SP ret addr

12

Stack Smashing Attack
• First, attacker stashes malicious code

sequence somewhere in program’s address
space

• Next, attacker provides carefully-chosen
88-byte sequence

– Last four bytes chosen to hold code’s address
overwrite saved return address

• When vulnerable() returns, CPU loads
attacker’s return addr – handing control
over to attacker's malicious code

• Stack smashing exploit reference:
– “Smashing the Stack for Fun and Profit,” written

by Aleph One in November 1996

13

Buffer Overrun Summary
• Attackers developed techniques for when:

– Buffer stored on the heap instead of on stack
– Can only overflow buffer by one byte
– Characters written to buffer are limited (e.g., only

uppercase characters)
– …

• Exploiting buffer overruns appears mysterious,
complex, or incredibly hard to exploit

– Reality – it is none of the above!
• Worms exploit these bugs all the time

– Code Red II compromised 250K machines by
exploiting IIS buffer overrun

14

Format String Vulnerabilities
• void vulnerable() {

char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)

return;
printf(buf);

}

• Do you see the bug?
• Last line should be printf("%s", buf)

– If buf contains “%” chars, printf() will look for
non-existent args, and may crash or core-dump
trying to chase missing pointers

• Reality is worse…

15

Attack Examples
• Attacker can learn about function’s stack frame

contents if they can see what’s printed
– Use string “%x:%x” to see the first two words of stack

memory
• What does this string (“%x:%x:%s”) do?

– Prints first two words of stack memory
– Treats next stack memory word as memory addr and

prints everything until first '\0'
• Where does that last word of stack memory come

from?
– Somewhere in printf()’s stack frame or, given

enough %x specifiers to walk past end of printf()’s
stack frame, comes from somewhere in
vulnerable()'s stack frame

16

A Further Refinement
• buf is stored in vulnerable()’s stack frame

– Attacker controls buf’s contents and, thus, part of
vulnerable()’s stack frame

– Where %s specifier gets its memory addr!
• Attacker stores addr in buf, then when %s

reads a word from stack to get an addr, it
receives the addr they put there for it…

– Exploit: "\x04\x03\x02\x01:%x:%x:%x:%x:%s"
– Attacker arranges right number of %x’s, so addr is

read from first word of buf (contains 0x01020304)
– Attacker can read any memory in victim’s address

space – crypto keys, passwords…

17

Yet More Troubles…
• Even worse attacks possible!

– If the victim has a format string bug
• Use obscure format specifier (%n) to write

any value to any address in the victim’s
memory

• Enables attackers to mount malicious
code injection attacks

– Introduce code anywhere into victim’s memory
– Use format string bug to overwrite return

address on stack (or a function pointer) with
pointer to malicious code

18

Format String Bug Summary

• Any program that contains a format
string bug can be exploited by an
attacker
–Gains control of victim’s program and all

privileges it has on the target system

• Format string bug, like buffer overruns,
are nasty business

19

Administravia
• Group partner sign-up

– Use newsgroup to find partner
• HW1 graded

Mean: 42.4
Standard deviation: 12.3
Minimum: 6.0
1st quartile: 35.0
2nd quartile (median): 48.0
3rd quartile: 53.0
Maximum: 55.0

20

Another Vulnerability
• char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

• What's wrong with this code?
• Hint – memcpy() prototype:

– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

• Do you see it now?

21

Implicit Casting Bug
• Attacker provides a negative value for len

–if won’t notice anything wrong
– Execute memcpy() with negative third arg
– Third arg is implicitly cast to an unsigned int, and

becomes a very large positive int
–memcpy() copies huge amount of memory into buf,

yielding a buffer overrun!
• A signed/unsigned or an implicit casting bug

– Very nasty – hard to spot
• C compiler doesn’t warn about type mismatch

between signed int and unsigned int
– Silently inserts an implicit cast

22

Another Example
• size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);
...

• What’s wrong with this code?
– No buffer overrun problems (5 spare bytes)
– No sign problems (all ints are unsigned)

• But, len+5 can overflow if len is too large
– If len = 0xFFFFFFFF, then len+5 is 4
– Allocate 4-byte buffer then read a lot more than 4

bytes into it: classic buffer overrun!
• You have to know programming language’s

semantics very well to avoid all the pitfalls

