

Some historical worms of note

Worm	Date	Distinction
Morris	11/88	Used multiple vulnerabilities, propagate to "nearby" sys
ADM	5/98	Random scanning of IP address space
Ramen	1/01	Exploited three vulnerabilities
Lion	3/01	Stealthy, rootkit worm
Cheese	6/01	Vigilante worm that secured vulnerable systems
Code Red	7/01	First sig Windows worm; Completely memory resident
Walk	8/01	Recompiled source code locally
Nimda	9/01	Windows worm: client-to-server, c-to-c, s-to-s,
Scalper	6/02	11 days after announcement of vulnerability; peer-to- peer network of compromised systems
Slammer	1/03	Used a single UDP packet for explosive growth

Outline

Worms

- Worm examples and propagation methods
 Defenses
- Bots
 - Structure and use of bots
 - Recognizing bot propagation
 - Recognizing bot operation

Cost of worm attacks

Morris worm, 1988

- Infected approximately 6,000 machines
 » 10% of computers connected to the Internet
 cost ~ \$10 million in downtime and cleanup
- Code Red worm, July 16 2001
 - Direct descendant of Morris' worm
 - Infected more than 500,000 servers
 » Programmed to go into infinite sleep mode July 28
 - Caused ~ \$2.6 Billion in damages

Statistics: Computer Economics Inc., Carlsbad, California

Worm

- A worm is self-replicating software designed to spread through the network
 - Typically exploit security flaws in widely used services
 - Can cause enormous damage
 - » Launch DDOS attacks, install bot networks
 - » Access sensitive information
 - » Cause confusion by corrupting the sensitive information

• Worm vs Virus vs Trojan horse

- A virus is code embedded in a file or program
- Viruses and Trojan horses rely on human intervention
- Worms are self-contained and may spread
- autonomously

Internet Worm (First major attack)

Released November 1988

- Program spread through Digital, Sun workstations
- Exploited Unix security vulnerabilities
 » VAX computers and SUN-3 workstations running versions 4.2 and 4.3 Berkeley UNIX code
- Consequences
 - No immediate damage from program itself
 - Replication and threat of damage
 - » Load on network, systems used in attack
 - » Many systems shut down to prevent further attack

Three ways the worm spread

- Sendmail
 - Exploit debug option in sendmail to allow shell access
- Finderd
 - Exploit a buffer overflow in the fgets function
 - Apparently, this was the most successful attack
- Rsh
 - Exploit trusted hosts
 - Password cracking

Code Red Initial version released July 13, 2001 - Sends its code as an HTTP request - HTTP request exploits buffer overflow Malicious code is not stored in a file » Placed in memory and then run When executed, -Worm checks for the file C:\Notworm » If file exists, the worm thread goes into infinite sleep state Creates new threads » If the date is before the 20th of the month, the next 99 threads attempt to exploit more computers by targeting random IP addresses

The worm itself

- Program is called 'sh'
 - Clobbers argy array so a 'ps' will not show its name Opens its files, then unlinks (deletes) them so can't be found
- » Since files are open, worm can still access their contents
- Tries to infect as many other hosts as possible
 - When worm successfully connects, forks a child to continue the infection while the parent keeps trying new hosts
- Worm did not:
 - Delete system's files, modify existing files, install trojan horses, record or transmit decrypted passwords, capture superuser privileges, propagate over UUCP, X.25, DECNET, or BITNET

• Initial release of July 13

- 1st through 20th month: Spread
- » via random scan of 32-bit IP addr space 20th through end of each month: attack.
- - » Flooding attack against 198.137.240.91 (www.whitehouse.gov)
- Failure to seed random number generator ⇒ linear growth
- Revision released July 19, 2001.
 - White House responds to threat of flooding attack by changing the address of www.whitehouse.gov
 - Causes Code Red to <u>die</u> for date $\ge 20^{\text{th}}$ of the month. -
 - But: this time random number generator correctly seeded

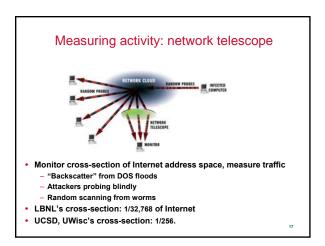
Slides: Vern Paxson

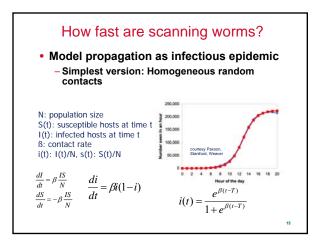
Stopping the worm

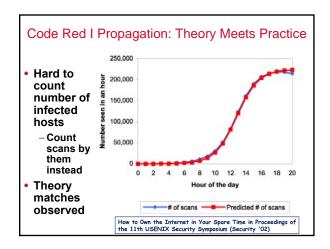
- System admins busy for several days Devised, distributed, installed modifications
- Perpetrator
 - Student at Cornell; discovered quickly and charged - Sentence: community service and \$10,000 fine
 - » Program did not cause deliberate damage
 - » Tried (failed) to control # of processes on host machines
- Lessons?
 - Security vulnerabilities come from system flaws
 - Diversity is useful for resisting attack
 - "Experiments" can be dangerous
- More Info
 - Eugene H. Spafford, The Internet Worm: Crisis and Aftermath, CACM 32(6) 678-687, June 1989
 - Page, Bob, "A Report on the Internet Worm",
 - http://www.ee.ryerson.ca:8080/~elf/hack/iworm.html

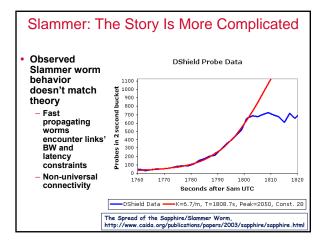
Witty Worm (II)

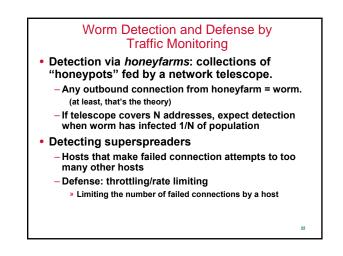
- First widely propagated worm w. destructive payload
- Corrupted hard disk
- Seeded with more ground-zero hosts - 110 infected machines in first 10 seconds
- Shortest interval btw vulnerability disclosure & worm release
 - -1 day
- Demonstrate worms effective for niche too
- · Security devices can open doors to attacks
 - Other examples: Anti-virus software, IDS

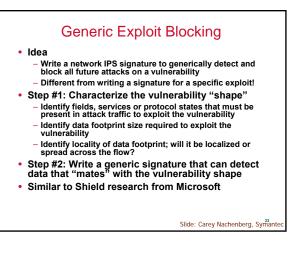

How to Measure Worm Scale?

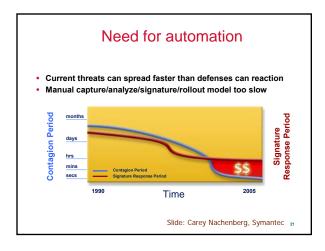

How do worms propagate?


Scanning worms


- Worm chooses "random" address
- Coordinated scanning
- Different worm instances scan different addresses
 Flash worms
- Assemble tree of vulnerable hosts in advance, propagate along tree
 Meta-server worm
- Ask server for hosts to infect (e.g., Google for "powered by phpbb")
 Topological worm:
- Use information from infected hosts (web server logs, email address books, config files, SSH "known hosts")
- Contagion worm
 - Propagate parasitically along with normally initiated communication

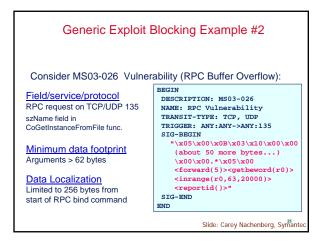

14

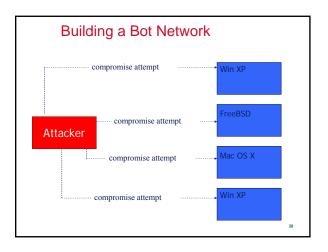




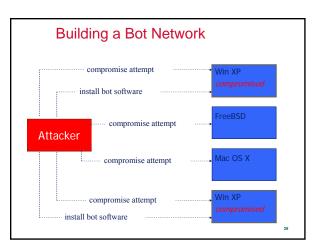


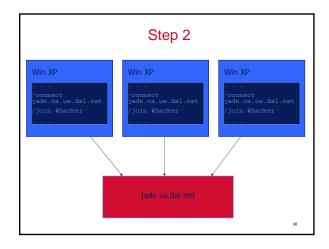
Challenges for Worm Defense

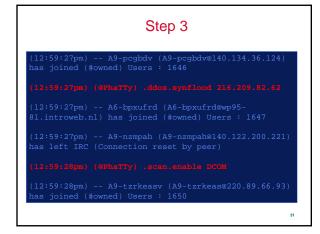

- Short interval btw vulnerability disclosure & worm release
 - -Witty worm: 1 day
 - -Zero-day exploits
- Fast
 - Slammer: 10 mins infected 90% vulnerable hosts
 How fast can it be?
 - » Flashworm: seconds [Staniford et. al., WORM04]
- Large scale
 - Slammer: 75,000 machines
 - CodeRed: 500,000 machines



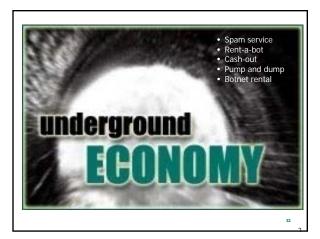
Slide: Carey Nachenberg, Symantec




Botnet


- Collection of compromised hosts
 Spread like worms and viruses
 - Once installed, respond to remote commands
- Platform for many attacks – Spam forwarding (70% of all spam?)
 - Click fraud
 - Keystroke logging
 - Distributed denial of service attacks
- Serious problem
 - Top concern of banks, online merchants
 - Vint Cerf: 1/4 of hosts connected to Internet

26


capability	ago	DSNX	evil	G-SyS	sd	Spy
create port redirect	√	√		√	\checkmark	\checkmark
other proxy	√					
download file from web	\checkmark	~		\checkmark	\checkmark	\checkmark
DNS resolution	√			√		
UDP/ping floods	√		\checkmark	\checkmark	\checkmark	
other DDoS floods	√			√		\checkmark
scan/spread	\checkmark	~		\checkmark	\checkmark	\checkmark
spam	√					
visit URL	√			√	\checkmark	

Storm Email Worm Case Study Clicking on email attachment/links causes malicious code installed - Fake news story on deadly storm - E-cards from family & friends - Links to malicious website for drive-by downloads - Quick change to stay ahead of AV blocking Malicious code is modified every 30 minutes, undermining standard signature based AV's ability to block this threat Infected machines form botnet – Largest botnet: 1.7 million bots by end of July P2P architecture instead of centralized Stealth: install rootkits, etc. Anti-VM: detects VM and won't infect them For profit:

- Botnet sent stock-picking spam, ripping profits for risen stock price

Underground commerce

Market in access to bots

- Botherd: Collects and manages bots
- Access to proxies ("peas") sold to spammers, often with commercial-looking web interface
- Sample rates
- Non-exclusive access to botnet: 10¢ per machine
- Exclusive access: 25¢.
- Payment via compromised account (eg PayPal) or cash to dropbox

Identity Theft

- Keystroke logging
- Complete identities available for \$25 \$200+
 - » Rates depend on financial situation of compromised person
 - » Include all info from PC files, plus all websites of interest with passwords/account info used by PC owner
 - » At \$200+, usually includes full credit report
 - [Llovd Taylor, Keynote Systems, SFBay InfraGard Board]

Bot detection methods

- · Signature-based (most AV products)
- Rule-based
 - Monitor outbound network connections (e.g. ZoneAlarm, BINDER) Block certain ports (25, 6667, ...)

Hybrid: content-based filtering

- Match network packet contents to known command strings (keywords) E.g. Gaobot ddos cmds: .ddos.httpflood
- Network traffic monitoring
 - Bot Hunter
- » Correlate various NIDS alarms to identify "bot infection sequence" - Recognize traffic patterns associated with dynamic dns based rallying