Firewall & Network-based Intrusion Detection

Dawn Song
dawnsong@cs.berkeley.edu

Network-level Filtering

 Firewalls & Intrusion Prevention Systems
—Peremiter defense
—Btw internet & intranet
—Block traffic violating security policy

Internet —@ S:;::L

This Lecture

Network-based Filtering
* Power

¢ Mechanism

* Challenges

Power of Network-based Filtering

* Why we do it (as opposed to host-based filtering)?

—Central chokepoint uses single place to easily enforce a
security policy on 1,000’s of machines
» Similar to airport security — few entrances

—Firewall operation does not rely on host security

e Power
—Broad spectrum
» Packet filtering: stateless, only-header based

» Application firewall: stateful, content-based, understanding
application semantics

Packet Filters
» Simplest kind of firewall is a packet filter
—Router with list of access control rules
—Router checks each received packet against security
rules to decide to forward or drop it
—Each rule specifies which packets it applies to based
on a packet’s header fields

» Specify source and destination IP addrs, port
numbers, and protocol names, or wild cards

» Each rule also specifies an action for matching packets:
ALLOW or DROP
» <ACTION> <PRTCL> <SRC:PT> -> <DEST:PT>

—List of rules is examined one-by-one
» First matching rule determines how packet will be handled

Security Policy based on IP Header

* A TCP service is specified by machine’s IP
address and TCP port number on it

—Web server ww.cs.berkeley.edu at
169.229.60.105, port 80

—Mail service at 169.229.60.93, port 25
—UDP services similarly identified

« Identify each svc with triplet (m,r,p):
—m is machine’s IP addr (A.B.C.D/[MASK])
—ris a TCP/UDP protocol identifier
—pis the port number

Example

* Want to allow:

—Inbound mail connections to our mail server
(1.2.3.4:25)

—All outbound connections
—Nothing else

—Consider this ruleset:
»allow tcp *:* -> 1.2.3.4:25
»allow tcp 1.2.3_*:* —> *:*
» drop *ookrk > ko

» This policy doesn't work...
—TCP connections are bidirectional

—3-way handshake: send SYN, receive SYN|ACK, send
ACK, send DATA w/ACK bit

Problem: Outbound Connections Falil

« Inside host opens TCP connection to port 80
on external machine:
—Initial SYN packet passed through by rule 2
—SYN|ACK packet coming back is dropped
» Fails rule 1 (not destined for port 25)
» Fails rule 2 (source not inside host)
» Matches rule 3 -> DROP
e Distinguish between 2 kinds of inbound pkts

—Allow inbound packets associated with an
outbound connection to pass

—Restrict inbound packets associated with an
inbound connection

Inbound versus Outbound Connections

» Key idea: use a feature of TCP!
—ACK bit set on all packets except first one
—Recipients discard any TCP packet with ACK bit set, if
packet is not associated with an existing TCP
connection
* Solution ruleset?
—allow tcp *:* -> 1.2.3.4:25
—allow tcp 1.2.3.%:* —> *:*
—allow tcp *:* -> {int_hosts}:* (if ACK bit set)
—drop * *o* > *ox
—Rules 1 and 3 allow inbound connections to port 25 on
machine1.2.3.4

—Rules 2 and 3 allow outbound connections to any port

9

Example Using This Ruleset

» QOutside attacker trying to exploit finger service
(TCP port 79) vulnerability

—Tries to open an inbound TCP connection to our finger
server

» Attempt #1:Sends SYN pkt to int. machine
— Pkt doesn’t have ACK bit set, so fw rule drops it
» Attempt #2: Sends SYN|ACK pkt to internal
machine
—FW permits pkt, then dropped by TCP stack (ACK bit
set but isn’t part of existing connection)
* We can specify policies restricting inbound
connections arbitrarily

IP Spoofing: Another Security Hole

 IP protocol doesn’t prevent attacker from
sending pkt with wrong (spoofed) src addr

—Most routers ignore src addrs
e Suppose 1.2.3.7 is an internal host

— Attacker sends spoofed TCP SYN packet

» Src addr 1.2.3.7, dest addr target internal machine, dest
port 79 —rule 2 allows

—Target replies with SYNJACK pktto 1.2.3.7 and
waits for ACK (to finish 3-way handshake)

— Attacker sends spoofed TCP ACK packet

— Attacker then sends data packet

Attack Analysis

» Attack allows connections to internal hosts
—Violates of our security policy
—Allows attacker to exploit any security holes
» Ex: finger service vulnerability
— Caveat:

» Attacker has to “guess” Initial Sequence Number set by
target in SYNJACK packet sentto 1.2.3.7 (many ways
to guess...)

* Modified Solution
—Packet filter marks each packet with incoming
interface ID, and rules match IDs

» Recall: Router has 2+ interfaces, forwards packets from
one to another

New Solution

* New ruleset

—Int. interface: in, ext. interface: out

—allow tcp *:*/out -> 1.2.3.4:25/in

—allow tcp *:*/in -> *:*/out

—allow tcp *:*/out -> *:*/in (if ACK bit set)

—drop * *:o* -> *r*

—Allows inbound packets only if destined to 1.2.3.4:25
(rule 1), or, if ACK bit set (rule 3)

—Drops all other inbound packets

» Clean solution: defeats IP spoofing threat

—Simplifies ruleset admin (no hardcode internal hosts
list)

Other Kinds of Firewalls

Packet filters are quite crude firewalls
—Network level using TCP, UDP, and IP headers
Alternative: examine data field contents

—Application-layer firewalls (application firewalls)

» Can enforce more restrictive security policies and transform
data on the fly

¢ For more information on firewalls, read:

—Cheswick, Bellovin, and Rubin: Firewalls and Internet
Security: Repelling the Wily Hacker.

Packet filtering sw available for many OS’s:

—Linux iptables, OpenBSD/FreeBSD PF, and
Windows XP SP2 firewall

Deployment

« Extremely broad deployment

* Many commercial products
—High-speed firewalls/IPSes

* New products on webapp filtering

Administravia

* Proj 2:
Mean: 23.7

Standard deviation: 2.6
9 groups extra credit

Network-based Intrusion
Detection/Prevention

« Often stateful, deep-packet inspection
— Full stream re-assembly
— Content-based analysis
« Examples
— Snort
— Bro
— Commercial appliances
* Detection methods
— Misuse detection (signature-based)
» E.g., snort rules
— anomaly detection (specification-based or statistical-based)
» E.g., port-scanning detection
« Often much more complex than packet filters

Attacks on NIDS

» Algorithmic complexity attacks
» Evasion attacks
 Stealthy port scanning

Algorithmic Complexity Attacks

« DoS attacks not only serious for denying service, but
can be more severe by using it as a component of an
attack

DoS attack on IDS enables other attacks to remain
undetected

“Denial of Service via Algorithmic Complexity Attacks”
by Crosby and Wallach

Complexity Attack on Hash Table

» On average, a hash table has O(n) overhead to
insert n elements

* In the worst case, a hash table may have O(n2)
overhead to insert n elements!

» Attack against Perl hash table:

—90K inserts
» Random: < 2 sec
» Worse case: > 6500 sec

Complexity Attack Against Bro

* Bro uses simple xor to “hash” values for hash table
— Easy to find collisions!
* Example: Bro port scanning detector keeps a hash table
— Keep the list of internal IP addresses scanned for each <src IP, dst
port>
» Using source IP spoofing, can exploit this structure to
perform DoS attack!

Allack | Random
Total CPU time | 44.50 min | .86 min
Hash table time | 43.78 min | .02 min

NIDS: Evasion & Normalization

e Problems

—Complete fragment reassembly necessary to detect
certain attacks

—NIDS only has partial knowledge of what traffic the
host sees (e.g., TTL expires, MTU)

—Ambiguities in TCP/IP (e.g., Overlapping IP & TCP
fragments)

» Different OS implement standard differently

Small TTL Attack

NIDS sees:

AEDEOKE K

End-host sees:

(Al Al el K]

Attacker’s data stream
(Al [A][C][K]
(—

same TCP seq #, “I" has short TTL

Fragmentation Overlap Attack

NIDS sees:

AEEXIMCEK
Internet. { Host

End-host sees:

AEAERIKIEE

Attacker’s data stream
(Al [T[AI 0[]k
(——

same TCP seq #
or same IP frag offset

Solution: Traffic Normalizer Stealth Port Scanning

* Introduce “bump in the wire”: traffic normalizer to * IPid field used for Backer Passy Viciin
evade protocol ambiguities stealth port scanning
— Drop overlapping IP/TCP fragments wechoroquasl_
— Increase TTL in packets with low TTL 17 Menomquest |
R
/| o fonl 1D=4
+1:; rEchorequast |
| ool D=5

FeReYh s Hstpo=pe | o fistener
J an port 24,

. ——EE RaT | ST eenerated
no listener | FEChOEQUASE] TCP RST gencraled

Normalizer

+1

* Other approaches
— Host-based IDS 2
— Detailed Intranet map tistener

exists!

Histener
exists an port 25,
S¥N-ACK geverated

+1

w
25 Ny B0l D=0 she IR

Summary

* Network-based filters:
—Another type of reference monitor

