
1

Firewall & Network-based Intrusion Detection

Dawn Song
dawnsong@cs.berkeley.edu

2

Network-level Filtering
• Firewalls & Intrusion Prevention Systems

– Peremiter defense
– Btw internet & intranet
– Block traffic violating security policy

Internet Internal
Network

3

This Lecture
Network-based Filtering
• Power
• Mechanism
• Challenges

4

Power of Network-based Filtering

• Why we do it (as opposed to host-based filtering)?
– Central chokepoint uses single place to easily enforce a

security policy on 1,000’s of machines
» Similar to airport security – few entrances

– Firewall operation does not rely on host security

• Power
– Broad spectrum

» Packet filtering: stateless, only-header based
» Application firewall: stateful, content-based, understanding

application semantics

5

Packet Filters
• Simplest kind of firewall is a packet filter

– Router with list of access control rules
– Router checks each received packet against security

rules to decide to forward or drop it
– Each rule specifies which packets it applies to based

on a packet’s header fields
» Specify source and destination IP addrs, port

numbers, and protocol names, or wild cards
» Each rule also specifies an action for matching packets:

ALLOW or DROP
» <ACTION> <PRTCL> <SRC:PT> -> <DEST:PT>

– List of rules is examined one-by-one
» First matching rule determines how packet will be handled

6

Security Policy based on IP Header

• A TCP service is specified by machine’s IP
address and TCP port number on it

– Web server www.cs.berkeley.edu at
169.229.60.105, port 80

– Mail service at 169.229.60.93, port 25
– UDP services similarly identified

• Identify each svc with triplet (m,r,p):
– m is machine’s IP addr (A.B.C.D/[MASK])
– r is a TCP/UDP protocol identifier
– p is the port number

7

Example
• Want to allow:

– Inbound mail connections to our mail server
(1.2.3.4:25)

– All outbound connections
– Nothing else
– Consider this ruleset:

» allow tcp *:* -> 1.2.3.4:25
» allow tcp 1.2.3.*:* -> *:*
» drop * *:* -> *:*

• This policy doesn't work…
– TCP connections are bidirectional
– 3-way handshake: send SYN, receive SYN|ACK, send

ACK, send DATA w/ACK bit
8

Problem: Outbound Connections Fail
• Inside host opens TCP connection to port 80

on external machine:
– Initial SYN packet passed through by rule 2
– SYN|ACK packet coming back is dropped

» Fails rule 1 (not destined for port 25)
» Fails rule 2 (source not inside host)
» Matches rule 3 -> DROP

• Distinguish between 2 kinds of inbound pkts
– Allow inbound packets associated with an

outbound connection to pass
– Restrict inbound packets associated with an

inbound connection

9

Inbound versus Outbound Connections
• Key idea: use a feature of TCP!

– ACK bit set on all packets except first one
– Recipients discard any TCP packet with ACK bit set, if

packet is not associated with an existing TCP
connection

• Solution ruleset?
– allow tcp *:* -> 1.2.3.4:25
– allow tcp 1.2.3.*:* -> *:*
– allow tcp *:* -> {int_hosts}:* (if ACK bit set)
– drop * *:* -> *:*

– Rules 1 and 3 allow inbound connections to port 25 on
machine 1.2.3.4

– Rules 2 and 3 allow outbound connections to any port

10

Example Using This Ruleset
• Outside attacker trying to exploit finger service

(TCP port 79) vulnerability
– Tries to open an inbound TCP connection to our finger

server
• Attempt #1:Sends SYN pkt to int. machine

– Pkt doesn’t have ACK bit set, so fw rule drops it
• Attempt #2: Sends SYN|ACK pkt to internal

machine
– FW permits pkt, then dropped by TCP stack (ACK bit

set but isn’t part of existing connection)
• We can specify policies restricting inbound

connections arbitrarily

11

IP Spoofing: Another Security Hole
• IP protocol doesn’t prevent attacker from

sending pkt with wrong (spoofed) src addr
– Most routers ignore src addrs

• Suppose 1.2.3.7 is an internal host
– Attacker sends spoofed TCP SYN packet

» Src addr 1.2.3.7, dest addr target internal machine, dest
port 79 – rule 2 allows

– Target replies with SYN|ACK pkt to 1.2.3.7 and
waits for ACK (to finish 3-way handshake)

– Attacker sends spoofed TCP ACK packet
– Attacker then sends data packet

12

Attack Analysis
• Attack allows connections to internal hosts

– Violates of our security policy
– Allows attacker to exploit any security holes

» Ex: finger service vulnerability
– Caveat:

» Attacker has to “guess” Initial Sequence Number set by
target in SYN|ACK packet sent to 1.2.3.7 (many ways
to guess…)

• Modified Solution
– Packet filter marks each packet with incoming

interface ID, and rules match IDs
» Recall: Router has 2+ interfaces, forwards packets from

one to another

13

New Solution
• New ruleset

– Int. interface: in, ext. interface: out
– allow tcp *:*/out -> 1.2.3.4:25/in
– allow tcp *:*/in -> *:*/out
– allow tcp *:*/out -> *:*/in (if ACK bit set)
– drop * *:* -> *:*

– Allows inbound packets only if destined to 1.2.3.4:25
(rule 1), or, if ACK bit set (rule 3)

– Drops all other inbound packets
• Clean solution: defeats IP spoofing threat

– Simplifies ruleset admin (no hardcode internal hosts
list)

14

Other Kinds of Firewalls
• Packet filters are quite crude firewalls

– Network level using TCP, UDP, and IP headers
• Alternative: examine data field contents

– Application-layer firewalls (application firewalls)
» Can enforce more restrictive security policies and transform

data on the fly

• For more information on firewalls, read:
– Cheswick, Bellovin, and Rubin: Firewalls and Internet

Security: Repelling the Wily Hacker.
• Packet filtering sw available for many OS’s:

– Linux iptables, OpenBSD/FreeBSD PF, and
Windows XP SP2 firewall

15

Deployment
• Extremely broad deployment
• Many commercial products

– High-speed firewalls/IPSes
• New products on webapp filtering

16

Administravia
• Proj 2:

Mean: 23.7
Standard deviation: 2.6
9 groups extra credit

17

Network-based Intrusion
Detection/Prevention

• Often stateful, deep-packet inspection
– Full stream re-assembly
– Content-based analysis

• Examples
– Snort
– Bro
– Commercial appliances

• Detection methods
– Misuse detection (signature-based)

» E.g., snort rules
– anomaly detection (specification-based or statistical-based)

» E.g., port-scanning detection

• Often much more complex than packet filters

18

Attacks on NIDS
• Algorithmic complexity attacks
• Evasion attacks
• Stealthy port scanning

19

Algorithmic Complexity Attacks
• DoS attacks not only serious for denying service, but

can be more severe by using it as a component of an
attack

• DoS attack on IDS enables other attacks to remain
undetected

• “Denial of Service via Algorithmic Complexity Attacks”
by Crosby and Wallach

20

Complexity Attack on Hash Table
• On average, a hash table has O(n) overhead to

insert n elements
• In the worst case, a hash table may have O(n2)

overhead to insert n elements!
• Attack against Perl hash table:

– 90K inserts
» Random: < 2 sec
» Worse case: > 6500 sec

21

Complexity Attack Against Bro
• Bro uses simple xor to “hash” values for hash table

– Easy to find collisions!
• Example: Bro port scanning detector keeps a hash table

– Keep the list of internal IP addresses scanned for each <src IP, dst
port>

• Using source IP spoofing, can exploit this structure to
perform DoS attack!

22

NIDS: Evasion & Normalization
• Problems

– Complete fragment reassembly necessary to detect
certain attacks

– NIDS only has partial knowledge of what traffic the
host sees (e.g., TTL expires, MTU)

– Ambiguities in TCP/IP (e.g., Overlapping IP & TCP
fragments)

» Different OS implement standard differently

23

Internet

Small TTL Attack

NIDS

Host

EndEnd--host sees:host sees:AttackerAttacker’’s data streams data stream

A T T I A C K A T T A C K

A

NIDS sees:NIDS sees:

T T I A C

same TCP same TCP seqseq #, #, ““II”” has short TTLhas short TTL

K

24

Internet

Fragmentation Overlap Attack

EndEnd--host sees:host sees:

NIDS sees:NIDS sees:

AttackerAttacker’’s data streams data stream

NIDS

Host

A T T A I C K

same TCP same TCP seqseq ##
or same IP or same IP fragfrag offsetoffset

A T T A I C K

A T T A I C K

25

Solution: Traffic Normalizer

Internet

NIDS

HostNormalizer

• Introduce “bump in the wire”: traffic normalizer to
evade protocol ambiguities

– Drop overlapping IP/TCP fragments
– Increase TTL in packets with low TTL

• Other approaches
– Host-based IDS
– Detailed Intranet map

26

Stealth Port Scanning
• IP id field used for

stealth port scanning

27

Summary
• Network-based filters:

– Another type of reference monitor

