
1

SFI and VMM

Dawn Song
dawnsong@cs.berkeley.edu

Credit: Some slides from John Mitchell

2

Review
• Preventing privilege escalation

– Drop privileges asap
– Privilege separation

• Sandboxing untrusted code
– System call interposition
– Hardware-based fault isolation

3

Software Fault Isolation
• Idea: insert code in extension code to ensure

certain security properties
• SFI [Wahbe et. al. 93]

– Software fault isolation
– Security property to guarantee:

Extension code only writes and jumps to dedicated
data and code region

– How to ensure this?

4

Segments
• Divide application’s virtual address space into

segments
– With upper bits the same: segment identifier

• A fault domain has two segments
– Code segments
– Data segments

• Security property to ensure
– Distrusted code only jumps to its code segment, only

writes to its data segment

code
segment

data
segment

code
segment

data
segment

app #1 app #2

5

Idea
• Locate unsafe instructions: jmp, store

– At compile time, add guards before unsafe
instructions to check whether the target is within
dedicated region

– When loading code, ensure all guard are present
• Optimization:

– instead of checking, simply sets the high-order bits
to be segment identifier

• Where to store the value of the masks?
– Dedicated registers

• How to prevent jumping over the inserted check
code?

– Use dedicated registers

6

Segment Matching
• Designed for MIPS processor. Many registers

available.

• dr1, dr2: dedicated registers not used by
binary

– Compiler pretends these registers don’t exist
– dr2 contains segment ID

• Indirect store instruction [addr] ← R12
becomes:

dr1 ← addr
scratch-reg ← (dr1 >> 20) : get segment ID
compare scratch-reg and dr2 : validate
ID

7

Address Sandboxing
• dr2: holds segment ID followed by the proper number of

zero’s

• Indirect store instruction [addr] ← R12 becomes:

dr1 ← addr & segment-mask : zero out seg bits
dr1 ← dr1 | dr2 : set valid seg ID
[dr1] ← R12 : do store

• Fewer instructions than segment matching
… but does not catch offending instructions

• Untrusted jump instruction handled similarly
• Why use dedicated register?
• What happens if untrusted code jumps to the middle of

the sequence?

8

Instrumentation and Verification
• Instrumentation

– Modify gcc compiler to emit encapsulated object code
• Verification

– Verify when module is loaded
– Why verification?

» Module is untrusted
» Verifier can be much simpler than the instrumentor

– How to verify?
» Dedicated registers are only used for the added

instrumentations
» Each store and jump instruction is properly guarded

9

SFI Summary
• Security property ensured:

Distrusted code only jumps to its code segment,
only writes to its data segment

• Tradeoff btw computation overhead &
communication overhead

• More information:
– Efficient Software-based Fault Isolation, by Robert

Wahbe, Steven Lucco, Thomas Anderson, Susan
Graham

10

Generalization: In-line Reference Monitor

• In-line reference monitors/dynamic checks
– IRMs enforce security policies by inserting into subject

programs the code for validity checks and also any
additional state that is needed for enforcement

• Idea
– Add dynamic checks to enforce properties at run time
– Combine with static analysis to reduce dynamic checks
– Ensure dynamic checks are not by-passed

» Control & data property enforcements are intertwined
– Verifier:

» Ensure dynamic checks are properly inlined

11

A Whole Spectrum
• Tradeoff

– Complexity of properties enforced
– Runtime overhead
– Assumptions required
– Complexity of priori analysis needed

• Properties enforced entail
– What dynamic checks to add
– How to add these dynamic checks

• The spectrum
– SFI, CFI (control flow integrity), DFI (data flow integrity), XFI, …
– Interpreter/emulator is one end of the spectrum

12

Administravia

• Project 2

13

Virtual Machine Monitor
• Virtualization

– Creating a simulated computer environment (Virtual Machine)
for the guest software

– Guest software (often including a complete OS) runs as if it’s on
a stand-alone hardware

– Virtual Machine Monitor (VMM): virtualization platform
» Also called hypervisors

• Hypervisors:
– Type I: runs directly on hardware

» Guest OS runs at the second level above hardware
» E.g., VMWare ESX, Microsoft Hyper-V, Xen

– Type II: runs within a host OS
» Guest OS runs at the third level above hardware
» E.g., VMWare Workstation, Microsoft Virtual PC, Parallels

14

NSA NetTop

Virtual Machine Monitor (VMM)

Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

• single HW platform used for both classified and
unclassified data

15

History of VM Technology
• VMs in the 1960’s:

– Few computers, lots of users
– VMs allow many users to shares a single computer

• VMs 1970’s – 2000: non-existent

• VMs since 2000:
– Too many computers, too few users

» Print server, Mail server, Web server, File server, Database
server, …

– Wasteful to run each service on a different computer
» VMs save power while isolating services

16

VMM for Security
• VMM Security assumption:

– Provides isolation
– Malware can infect guest OS and guest apps
– But malware cannot escape from the infected VM

» Cannot infect Host OS
» Cannot infect other VMs on the same hardware

• Requires that VMM protect itself and is not buggy
– VMM is much simpler than full OS, easier to verify/get right

• Natual place to enforce security policies
– Policy checker does not need to rely on security of OS

17

Intrusion Detection / Anti-virus

• Runs as part of OS kernel and user space
process

– Kernel root kit can shutdown protection system
– Common practice for modern malware

• Standard solution: run IDS system in network
– Problem: insufficient visibility into user’s machine

• Better: run IDS as part of VMM (protected from
malware)

– VMM can monitor virtual hardware for anomalies
– VMI: Virtual Machine Introspection

» Allows VMM to check Guest OS internals

18

Sample Applications (I)

Stealth malware:
– Creates processes that are invisible to “ps”
– Opens sockets that are invisible to “netstat”

1. Lie detector check
– Goal: detect stealth malware that hides processes

and network activity
– Method:

» VMM lists processes running in GuestOS
» VMM requests GuestOS to list processes (e.g. ps)
» If mismatch, kill VM

19

Sample Applications (II)
2. Application code integrity detector

– VMM computes hash of user app-code running in VM
– Compare to whitelist of hashes

» Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity
– example: detect changes to sys_call_table

4. Virus signature detector
– Run virus signature detector on GuestOS memory

5. Detect if GuestOS puts NIC in promiscuous
mode

20

VM-based Malware
• Idea (blue pill/Subvirt):

– Once on the victim machine, install a malicious VMM
– Virus hides in VMM
– Invisible to virus detector running inside VM

HW
OS

⇒

HW

OS
VMM and virus

A
nti-virus

A
nti-virus

21

Conclusion
• SFI
• VMM

