SFl and VMM

Dawn Song
dawnsong@cs.berkeley.edu

Credit: Some slides from John Mitchell

Segments

 Divide application’s virtual address space into
segments
—With upper bits the same: segment identifier
* A fault domain has two segments
—Code segments
—Data segments
» Security property to ensure

—Distrusted code only jumps to its code segment, only
writes to its data segment

app #1 app #2

Review

* Preventing privilege escalation
—Drop privileges asap
— Privilege separation

* Sandboxing untrusted code
— System call interposition
—Hardware-based fault isolation

Idea

e Locate unsafe instructions: jmp, store

—At compile time, add guards before unsafe
instructions to check whether the target is within
dedicated region

—When loading code, ensure all guard are present
e Optimization:

—instead of checking, simply sets the high-order bits
to be segment identifier

* Where to store the value of the masks?
—Dedicated registers
* How to prevent jumping over the inserted check
code?
—Use dedicated registers

Software Fault Isolation

« |dea: insert code in extension code to ensure
certain security properties
* SFI [Wahbe et. al. 93]
— Software fault isolation

— Security property to guarantee:
Extension code only writes and jumps to dedicated
data and code region

—How to ensure this?

Segment Matching

» Designed for MIPS processor. Many registers
available.

e drl, dr2: dedicated registers not used by
binary
—Compiler pretends these registers don’t exist
—dr2 contains segment ID

* Indirect store instruction [addr] « R12
becomes:
drl < addr
scratch-reg « (drl >>20) : get segment ID
compare scratch-reg and dr2 :validate °




Address Sandboxing

dr2: holds segment ID followed by the proper number of
zero'’s

Indirect store instruction [addr] <~ R12 becomes:

drl <« addr & segment-mask : zero out seg bits
drl «drl | dr2 : set valid seg ID
[drl] « R12 : do store

Fewer instructions than segment matching

... but does not catch offending instructions
Untrusted jump instruction handled similarly
Why use dedicated register?

What happens if untrusted code jumps to the middle of
the sequence? ’

Generalization: In-line Reference Monitor

* In-line reference monitors/dynamic checks

—IRMs enforce security policies by inserting into subject
programs the code for validity checks and also any
additional state that is needed for enforcement

* Idea
—Add dynamic checks to enforce properties at run time
—Combine with static analysis to reduce dynamic checks
—Ensure dynamic checks are not by-passed
» Control & data property enforcements are intertwined
— Verifier:
» Ensure dynamic checks are properly inlined

Instrumentation and Verification

 Instrumentation
—Modify gcc compiler to emit encapsulated object code
 Verification
—Verify when module is loaded
—Why verification?
» Module is untrusted
» Verifier can be much simpler than the instrumentor
—How to verify?

» Dedicated registers are only used for the added
instrumentations

» Each store and jump instruction is properly guarded

A Whole Spectrum

* Tradeoff
— Complexity of properties enforced
— Runtime overhead
— Assumptions required
— Complexity of priori analysis needed

* Properties enforced entail
— What dynamic checks to add
— How to add these dynamic checks

* The spectrum
— SFI, CFl (control flow integrity), DFI (data flow integrity), XFI, ...
— Interpreter/emulator is one end of the spectrum

SFI Summary

e Security property ensured:
Distrusted code only jumps to its code segment,
only writes to its data segment

» Tradeoff btw computation overhead &
communication overhead
e More information:

— Efficient Software-based Fault Isolation, by Robert
Wahbe, Steven Lucco, Thomas Anderson, Susan
Graham

Administravia

* Project 2




Virtual Machine Monitor

« Virtualization

— Creating a simulated computer environment (Virtual Machine)
for the guest software

— Guest software (often including a complete OS) runs as if it's on
a stand-alone hardware

— Virtual Machine Monitor (VMM): virtualization platform

» Also called hypervisors
* Hypervisors:

— Type I: runs directly on hardware
» Guest OS runs at the second level above hardware
» E.g., VMWare ESX, Microsoft Hyper-V, Xen

— Type II: runs within a host OS
» Guest OS runs at the third level above hardware
» E.g., VMWare Workstation, Microsoft Virtual PC, Parallels

VMM for Security

* VMM Security assumption:
— Provides isolation
— Malware can infect guest OS and guest apps
— But malware cannot escape from the infected VM
» Cannot infect Host OS
» Cannot infect other VMs on the same hardware

* Requires that VMM protect itself and is not buggy
— VMM is much simpler than full OS, easier to verify/get right

< Natual place to enforce security policies
— Policy checker does not need to rely on security of OS

NSA NetTop

Virtual Machine Monitor (VMM)

Host OS

* single HW platform used for both classified and
unclassified data

Intrusion Detection / Anti-virus

* Runs as part of OS kernel and user space
process

—Kernel root kit can shutdown protection system
—Common practice for modern malware

» Standard solution: run IDS system in network
—Problem: insufficient visibility into user’s machine

» Better: run IDS as part of VMM (protected from
malware)

—VMM can monitor virtual hardware for anomalies

—VMI: Virtual Machine Introspection
» Allows VMM to check Guest OS internals

History of VM Technology

* VMs in the 1960’s:
—Few computers, lots of users
—VMs allow many users to shares a single computer

* VMs 1970's — 2000: non-existent

* VMs since 2000:

—Too many computers, too few users

» Print server, Mail server, Web server, File server, Database
server, ...

—Wasteful to run each service on a different computer
» VMs save power while isolating services

Sample Applications (1)

Stealth malware:
—Creates processes that are invisible to “ps”
—Opens sockets that are invisible to “netstat”

1. Lie detector check
—Goal: detect stealth malware that hides processes
and network activity
—Method:
» VMM lists processes running in GuestOS
» VMM requests GuestOS to list processes (e.g. ps)
» If mismatch, kill VM




Sample Applications (Il)

2. Application code integrity detector
—VMM computes hash of user app-code running in VM

—Compare to whitelist of hashes
» Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity
—example: detect changes to sys_call_table

4. Virus signature detector
—Run virus signature detector on GuestOS memory

5. Detect if GuestOS puts NIC in promiscuous
mode

VM-based Malware

* Idea (blue pill/Subvirt):
—Once on the victim machine, install a malicious VMM
—Virus hides in VMM
—Invisible to virus detector running inside VM

>
3
=
=
<.
=
c
w

VMM and virus

Conclusion

e SFI
* VMM




