A reference monitor is a tamperproof, always-invoked, and small-enough-to-be-fully-tested-andalyzed module that controls all software access to data objects or devices. The reference monitor verifies the nature of the request against a table of allowable access types for each process on the system.

- System call interposition
- SFI
- VMM

Key properties:
- Mediates requests from applications
 - Implements protection policy
 - Enforces isolation and confinement
- Must always be invoked:
 - Every application request must be mediated
- Tamperproof:
 - Reference monitor cannot be killed
 - ... or if killed, then monitored process is killed too
- Small enough to be analyzed and validated

Ensures safety property
- Whether a predicate will hold for a given state

Not liveness property
- Whether a predicate will hold some time in the future

Not information flow property (non-interference)

Example: covert channels
- Covert channel: unintended communication channel between isolated components
 - Can be used to leak classified data from secure component to public component
An example covert channel
• Both VMs use the same underlying hardware
 • To send a bit $b \in \{0, 1\}$ malware does:
 – $b=1$: at 1:30.00am do CPU intensive calculation
 – $b=0$: at 1:30.00am do nothing
 • At 1:30.00am listener does a CPU intensive calculation and measures completion time
 – Now $b = 1 \iff$ completion-time > threshold
• Many covert channel exist in running system:
 – File lock status, cache contents, interrupts, ...
 – Very difficult to eliminate

TCB
• The trusted computing base (TCB) of a computer system is the set of all hardware, firmware, and/or software components that are critical to its security in the sense that bugs occurring inside the TCB might jeopardize the security properties of the entire system
 • Example: on-line banking application
 • Security design principle: minimize TCB
 • Security enforcement:
 – Ensure TCB is trustworthy
 • Note the difference btw trusted and trustworthy

Trusted Path
• Mechanism that provides confidence that the user is communicating with what the user intended to communicate with, ensuring that attackers can’t intercept or modify whatever information is being communicated.
• Example: fake log-in program
 – Solution: ctrl+alt+delete guarantees correct log-in program is executed

Trusted Computing Overview
• Goals
 – Make computers a trustworthy execution platform
 – Prove to external entity what software is executing
• Challenges
 – Software vulnerabilities in OS and apps
 – Malware compromises systems
 – Hardware attacks by local user/attacker

Bootstrapping a Typical PC

Trustworthy Booting
• Different flavors of booting
 – “Untrusted booting”: no verification, no security guarantees
 – This is how current PCs boot
 – Secure boot: every layer verifies correctness of next layer before passing control to it
 – E.g., BIOS verifies signature of boot loader before passing control to it
 – Trusted/authenticated boot: establishes proof on what software has loaded
 • Secure boot and trusted boot assume core root of trust: correctness of BIOS bootloader
Secure Boot Integrity Guarantees

- Integrity of a layer can only be guaranteed if
 1. Base layer is immutable
 2. Integrity of the lower layer is verified
 3. Transition to higher layer only occurs after valid verification
- Secure boot ensures that operating system that is bootstrapped is based on untampered foundation (integrity guarantee)
- Not a problem in early days when firmware was stored on write-protected EPROMs, nowadays writeable FLASH memory is used

Trusted Computing Group (TCG)

- TCG (formerly known as TCPA) goal is to add secure platform primitives to each client (now the focus is also on servers, cell phones, PDAs, etc.)
- Industry consortium by AMD, IBM, Intel, HP, Microsoft, ...
- These secure platform primitives include
 - Platform integrity measurements
 - Measurement attestation
 - Protected storage
 - Sealed storage
- These can be used to provide trusted boot (as opposed to secure boot)
- Provides attestation, which enables an external verifier to check integrity of software running on host
 - Goal: ensure absence of malware; detect spyware, viruses, etc.

TCG Overview (1)

- Main goals: enable trusted boot and remote attestation
- TCG chip provides/contains
 - Tamper-resistant enclosure for trusted information
 - Secure storage for private key \(K_{\text{TPM}} \)
 - Manufacturer certificate, for example \((K_{\text{TPM}}, K_{\text{IBM}}) \)
 - Immutable storage for software integrity measurements
 - Digital signature capability

TCG Trusted Platform Module (TPM)

- Platform Configuration Register (PCR)
- Non-Volatile Storage
 - (EK, AIK, SRK)
- Random Number Generator
- Secure Hash SHA-1
- Key Generation
- Crypto
 - RSA
- LPC bus
- I/O

TCG Overview (2)

- Setting
 - External entity A wants to verify correctness of software executing on platform B
 - Assume that A trusts manufacturer’s public key \(K_{\text{IBM}} \)
 - B is equipped with TPM chip and performed trusted boot process
- TCG trusted boot process on B (simplified!)
 - BIOS loads OS loads App
 - Assume BIOS is Core Root of Trust
 - BIOS loads OS, computes H(OS), sends H(OS) to TPM to extend register PCR0, executes OS
 - OS loads App, computes H(App), sends H(App) to TPM to extend register PCR1, executes App

TCG Overview (3)

- A wants to attest to B’s software
 - \(A \rightarrow B \): attestation request, nonce
 - \(B \): attestation request \& nonce sent to TPM
- TPM computes signature of PCRs and nonce
 - \(B \rightarrow A : (K_{\text{TPM}}, K_{\text{IBM}}, (\text{PCR0, PCR1, nonce})^{K_{\text{TPM}}} \)
- A verifies certificate, signature and correctness of PCR0 and PCR1
- If all checks successful, A trusts that B is executing correct OS and App
Basic TCG-Style Attestation

BIOS — Boot Loader — OS Kernel

TPM

PCR

Hardware Software

Trusted Computing Key Components (I)

- **Endorsement Key**
 - Private/public key pair generated on-chip at manufacture time
 - Private key never leaves chip

- **Secure I/O (Trusted path)**
 - A protected path between the computer user and the software with which they believe they are interacting
 - TPM can check software drivers used for I/O have not been tampered with

Trusted Computing Key Components (II)

- **Protected storage**
 - Provide secure storage, not accessible by OS

- **Sealed storage**
 - Protects private information by binding it to platform configuration information including the software and hardware being used
 - Data can be read only by the specified combination of software and hardware

- **Remote attestation**
 - Remotely attesting what software is running on the computer

Applications of Trusted Computing

- Preventing cheating in on-line gaming
 - Players modify game in order to cheat
 - Remote attestation can verify all players connected to game server are running an unmodified copy

- Verification of remote computation for grid-computing

- Digital Rights Management
 - Downloading a music file
 - Remote attestation
 - Refuse to play except on specific music player
 - Windows Media Player
 - Sealer storage prevent opening file from another player

Problems with Integrity Measurements

- **How do you handle all the different firmware versions, patches, kernel builds? What does a PCR mean in this context?**

- **Integrity measurements are done at load-time not at run-time**
 - Time-of-check-time-of-use (TOCTOU) problem
Policy Issues

- Can TPMs be used for malicious purposes?
 - Could software vendor control all applications that are executed?
 - Could content provider have total control over how we use data? Fair use?
- TPMs can enhance security of computer systems
 - Should government require use of TPMs?

TCG Controversy

- TCG is considered very controversial because it potentially allows content providers to control clients (DRM enforcement)
- This takes away the freedom of the user to use the system as it sees fit (it can be used to lock-out GPL software)
- A privacy concern is that TCG can be used to track users

Conclusion

- Reference monitor
- Trusted computing
 - TCB
 - Trusted path
 - Secure boot/Trusted boot
 - Remote attestation
 - Trusted computing key components

Questionaire

- Pls provide as much feedback as you can