Key management
Password hashing

CS 161: Computer Security
Prof. Raluca Ada Popa

Key management on whiteboard

Password hashing in these slides

Announcement

* Project 2 part 1 due today

Passwords

Tension between usability and security

choose memorable choose rgndom and
passwords long passwords (hard

to guess)

The 25 Most Popular Passwords of 2015: We're All
Such Idiots

Jamie Condliffe
PASSWORDS

1. 123456 (Unchanged)

2. password (Unchanged)
3. 12345678 (Up 1)

4. qwerty (Up 1)

5.12345 (Down 2)

6. 123456789 (Unchanged)
7. football (Up 3)

8. 1234 (Down 1)

Attack mechanisms

Online guessing attacks

— Attacker tries to login by guessing user’s password
Social engineering and phishing

— Attacker fools user into revealing password
Eavesdropping

— Network attacker intercepts plaintext password on the
connection

Client-side malware

— Key-logger/malware captures password when
Inserted and sends to attacker

Server compromise

— Attacker compromises server, reads storage and
learns passwords

Defences/mitigations

Network eavesdropper:
* Encrypt traffic using SSL (will discuss later)

Client-side malware: hard to defend
 Use two-factor authentication

* [ntrusion detection mechanisms — detect malware when
it is being inserted into the network

« Various security software (e.g., anti-virus)

Mitigations for online-guessing
attacks

» Rate-limiting
— Impose limit on number of passwords attempts

« CAPTCHAs: to prevent automated password guessing

Nteﬂvﬁks m

Type the two words: ~
i ((meCAPTCHA"
(2] | book

« Password requirements: length, capital letters,
characters, etc.

Mitigations for server compromise

* Suppose attacker steals the database at
the server including all password
information

» Storing passwords in plaintext makes
them easy to steal

* Further problem: users reuse passwords
at different sites!

Don’t store passwords in plaintext at server!

Hashing passwords

* Server stores hash(password) for each
user using a cryptographic hash function

— hash is a one-way function

username hash of password
Alice hash(Alice’s password)
Bob hash(Bob’s password)

* When Alice logs in with password w,
server computes hash(w) and compares to
Alice’s record

Password hashing: problems

 Offline password guessing

— Dictionary attack: attacker tries all passwords
against each hash(w)

— Study shows that a dictionary of 220 passwords
can guess 50% of passwords

* Amortized password hashing
— Idea: One brute force scan for all/many hashes
— Build table (H(password), password) for all 220
passwords
— Crack 50% of passwords in this one pass

THE CYBERCRIME ECONOMY

More than 6 million
LinkedIn passwords
stolen

By David Goldman @ CNNMoneyTech June 7, 2012: 9:34 AM ET

[Eals] Wkl Lasgest Profesibonal Netwark | Linkedin

P 8w @ AA e F AT R W e o N+ e e ikedncom someir b, hame & Qrca
[0 B Apple Vil CoupleMigs TouTube Wikigedla Mews (4717 Poputars

’ ET=E " o ‘mi-ﬁ 'mv

Lil‘ted m. ey Paanmcrs ¥ ogor your paateoret

Be great at what you do.

BN - Get started — it's free.

REQALT G, Thubt W45 1730 T Mamites

LinkedIn was storing h(password)

Mas the number one hacked password. according to Rapid7. But many other
Redln users also picked passwords § "work" and "job" or example — that were

associated with the career site's content.

Religion was also a popular password t@pic — "god," "angel" and "jesus" glso made
the top 15. Number sequences such asf1234" and "12345" also made thqlist.

Password cracking software

2. John the Ripper : Multi-platform, Powerful, Flexible password cracking tool

John the Ripper is a free multi or cross platform password cracking software. Its called multi platform as it combines different password cracking

features into one package.

It's primarily used to crack weak UNIX passwords but also available for Linux, Mac, and Windows. We can run this software against different
password encryptions including many password hashes normally found in different UNIX versions. These hashes are DES, LM hash of Windows
NT/2000/XP/2003, MD5, and AFS.

Fle FSCrackMode Help

Configuration
John exscutable: |C:\un\john-396 exe
Passwdfie: [C\umhashd
Wordist (or stdi)
Common Options Cracking Modes
show [test [single [] rules
[restore [incremental mode:
[status [] extemal mode
] session

Cain and Abel

THC Hydra
Brutus

Prevent amortized guessing attack

Randomize hashes with salt

Server stores (salt, hash(password, salt)), salt is
random

Two equal passwords have different hashes now

Need to do one brute force attack per hash now,
not one brute force attack for many hashes at

once

Salted hash example

Server stores:

username salt hash of password

Alice 235545235 hash(Alice’s password,
235545235)

Bob 678632523 hash(Bob’s password,
678632523)

Attacker tries to guess Alice’s password:

Computes table
‘aaaaaa’ | hash('aaaaaa’, 235545235),
‘aaaaab’ | hash('aaaaab’, 235545235),

'zzzzzz7' | hash('zzzzzz', 235545235)

This table is useless for Bob’s password because of different
salt

Increase security further

* Would like to slow down attacker in doing a dictionary
attack

« Use slow hashes = takes a while to compute the hash
* Define

H(x) = hash(hash(hash(...hash(x))))
use with x = password || salt

* Tension: time for user to authenticate & login vs
attacker time

« If His 1000 times slower and attack takes a day with
H, attack now takes 3 years with F

Conclusions

* Do not store passwords in cleartext

o Store them hashed with salts, slower hash functions
better

