
Key management
Password hashing
CS 161: Computer Security

Prof. Raluca Ada Popa
Oct 4, 2016

Key management on whiteboard
Password hashing in these slides

Announcement

• Project 2 part 1 due today

Passwords

Tension between usability and security

choose memorable
passwords

choose random and
long passwords (hard
to guess)

Attack mechanisms
• Online guessing attacks

– Attacker tries to login by guessing user’s password
• Social engineering and phishing

– Attacker fools user into revealing password
• Eavesdropping

– Network attacker intercepts plaintext password on the
connection

• Client-side malware
– Key-logger/malware captures password when

inserted and sends to attacker
• Server compromise

– Attacker compromises server, reads storage and
learns passwords

Defences/mitigations

Network eavesdropper:
• Encrypt traffic using SSL (will discuss later)

Client-side malware: hard to defend
• Use two-factor authentication
• Intrusion detection mechanisms – detect malware when

it is being inserted into the network
• Various security software (e.g., anti-virus)

Mitigations for online-guessing
attacks

• Rate-limiting
– Impose limit on number of passwords attempts

• CAPTCHAs: to prevent automated password guessing

• Password requirements: length, capital letters,
characters, etc.

Mitigations for server compromise

• Suppose attacker steals the database at
the server including all password
information

• Storing passwords in plaintext makes
them easy to steal

• Further problem: users reuse passwords
at different sites!

Don’t store passwords in plaintext at server!

Hashing passwords
• Server stores hash(password) for each

user using a cryptographic hash function
– hash is a one-way function

• When Alice logs in with password w,
server computes hash(w) and compares to
Alice’s record

username hash of password
Alice hash(Alice’s password)

Bob hash(Bob’s password)

Password hashing: problems

• Offline password guessing
– Dictionary attack: attacker tries all passwords

against each hash(w)
– Study shows that a dictionary of 220 passwords

can guess 50% of passwords
• Amortized password hashing

– Idea: One brute force scan for all/many hashes
– Build table (H(password), password) for all 220

passwords
– Crack 50% of passwords in this one pass

LinkedIn was storing h(password)

Password cracking software

Cain and Abel

Brutus
THC Hydra

Prevent amortized guessing attack

• Randomize hashes with salt
• Server stores (salt, hash(password, salt)), salt is

random
• Two equal passwords have different hashes now
• Need to do one brute force attack per hash now,

not one brute force attack for many hashes at
once

username salt hash of password
Alice 235545235 hash(Alice’s password,

235545235)

Bob 678632523 hash(Bob’s password,
678632523)

Salted hash example

Attacker tries to guess Alice’s password:
Computes table
‘aaaaaa’ hash(’aaaaaa’, 235545235),
‘aaaaab’ hash(’aaaaab’, 235545235),
…
‘zzzzzzz’ hash(’zzzzzz’, 235545235)

This table is useless for Bob’s password because of different
salt

Server stores:

Increase security further

• Would like to slow down attacker in doing a dictionary
attack

• Use slow hashes = takes a while to compute the hash
• Define

H(x) = hash(hash(hash(…hash(x))))
use with x = password || salt

• Tension: time for user to authenticate & login vs
attacker time

• If H is 1000 times slower and attack takes a day with
H, attack now takes 3 years with F

Conclusions

• Do not store passwords in cleartext
• Store them hashed with salts, slower hash functions

better

