"Secure" Coding Practices
Nicholas Weaver

based on David Wagner’s slides from Sp 2016

Administrivia

Computer Science 161 Fall 2016 Nicholas Weaver

BUT WHY?1? WE
NEVER PROGRAIIMED
THEM TO DO THIO !

static bool isCrazyMurderingRobot = false;

void interact_with_humans (void){

if(isCrazyMurderingRobot = true)
kill(humans);

else

be_nice_to(humans);

L gy L .y — , ———

This is a Remarkably Typical C
Problem

Computer Science 161 Fall 2016

if ((options == (__WCLONE| WALL)) && (current->uid = 0))
retval = -EINVAL;

- Someone attempted to add this checking code into the
Linux kernel back in 2003

* [t goes caught only because they didn't have proper write permission so it
was flagged as anomalous

- |f you use the proper compiler flags, it should gripe when
you do this

Why does software have vulnerabilities?

Computer Science 161 Fall 2016

- Programmers are humans.

And humans make mistakes.
e Use tools

- Programmers often aren’t security-aware.
* Learn about common types of security flaws.

- Programming languages aren’t designed well
for security.
» Use better languages (Java, Python, ...).

I’'ve }I\Ii”a’de a
Huge Mistake

Testing for Software Security Issues

- What makes testing a program for security problems difficult?

* We need to test for the absence of something
Security is a negative property!
“nothing bad happens, even in really unusual circumstances”

* Normal inputs rarely stress security-vulnerable code

- How can we test more thoroughly?
* Random inputs (fuzz testing)
* Mutation
e Spec-driven
- How do we tell when we’ve found a problem?

» Crash or other deviant behavior

- How do we tell that we’ve tested enough?
* Hard: but code-coverage tools can help

Testing for Software Security Issues

- What makes testing a program for security problems difficult?

* We need to test for the absence of something
Security is a negative property!
“nothing bad happens, even in really unusual circumstances”

* Normal inputs rarely stress security-vulnerable code

« How can we test more thoroughly?
* Random inputs (fuzz testing)
* Mutation
* Spec-driven
- How do we tell when we’ve found a problem?

» Crash or other deviant behavior

- How do we tell that we’ve tested enough?
* Hard: but code-coverage tools can help

Test For Failures...
Not Just Successes

Computer Science 161 Fall 2016

* Think about how your program might fail, not just succeed
* Because the bad guys are going to look there

- "Edge cases" are where your problems likely lie
* Either barely erroneous or barely correct

* E.g. if your function accepts strings up to length n
Be sure to test lengths 0, 1, n-1, n, n+1, 2n-1, 2n, and 2n+1

- A good guide by @eevee:
* https://eev.ee/blog/2016/08/22/testing-for-people-who-hate-testing/

This Applies to
Both Sides...

Computer Science 161 Fall 2016

- When making your program robust, think like an attacker
would

* "Hmm, what if | spew random junk?"
* "Hmm, what if | go for obvious corner cases?"

- When attacking software, think like a dumb programmer?
* "Hmm, what mistakes have | made in the past? Lets try those!"

Try to Eliminate entire classes

of problems

Computer Science

Stack Overflows:
e Turn on compiler protections

- Memory corruption attacks more generally

161 Fall 2016

* Use a safe language
e Or barring that, turn on ALL defenses:

WAX/DEP + 64b Af
SQL Injection

* Only use paramett

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN /-\ WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES UTTLE
ROBRY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
L TOSANMZE YOUR
DATARASE INPUTS.

Working Towards Secure Systems

Computer Science 161 Fall 2016

- Along with securing individual components, we need to keep them
up to date ...

- What’s hard about patching?
« (Can require restarting production systems
e (Can break crucial functionality
Vendor regression tests should prevent this but don't always!
 Management burden:
It never stops (the “patch treadmill”)

« User burden:
"Flaw in Flash, you need to manually update it..."

- But absolutely essential: 0-days are pricey, N-days are free

[linfo security|

NeWS STRATEGY /// INSIGHT /// TECHNIQUE

IT administrators give thanks for
light Patch Tuesday

07 November 2011

Microsoft is giving IT administrators a break for
Thanksgiving, with only four security bulletins
for this month’s Patch Tuesday.

Only one of the bulletins is rated critical by Microsoft, which
addresses a flaw that could result in remote code execution
attacks for the newer operating systems — Windows Vista,
Windows 7, and Windows 2008 Server R2.

The critical bulletin has an exploitability rating of 3, suggesting"

Working Towards Secure Systems

Computer Science 161 Fall 2016 Nicholas Weaver

- Along with securing individual components, need to keep them up to
date ...

- What’s hard about patching?
« (Can require restarting production systems
e (Can break crucial functionality

* Management burden:
It never stops (the “patch treadmill”) ...

... and can be difficult to track just what’s needed where
« Other (complementary) approaches?
* Vulnerability scanning: probe your systems/networks for known flaws

* Penetration testing (“pen-testing”): pay someone to break into your systems ...
... provided they take excellent notes about how they did it!

RISK ASSESSMENT - SECURITY & HACKTIVISM

Extremely critical Ruby on Rails bug
threatens more than 200,000 sites

Servers that run the framework are by default vulnerable to remote code attacks.

by Dan Goodin - Jan 8 2013, 4:35pm PST m m
Hundreds of thousands of websites are potentially at risk following the discovery of an extremely
critical vulnerability in the Ruby on Rails framework that gives remote attackers the ability to execute
malicious code on the underlying servers.

The bug is present in Rails versions spanning the past six years and in default configurations gives
hackers a simple and reliable way to pilfer database contents, run system commands, and cause
websites to crash, according to Ben Murphy, one of the developers who has confirmed the
vulnerability. As of last week, the framework was used by more than 240,000 websites, including
Github, Hulu, and Basecamp, underscoring the seriousness of the threat.

"It is quite bad,” Murphy told Ars. "An attack can send a request to any Ruby on Rails sever and then
execute arbitrary commands. Even though it's complex, it's reliable, so it will work 100 percent of the
time."

Murphy said the bug leaves open the possibility of attacks that cause one site running rails to seek
out and infect others, creating a worm that infects large swaths of the Internet. Developers with the
Metasploit framework for hackers and penetration testers are in the process of creating a module

that can scan the Internet for vulnerable sites and exploit the bug, said HD Moore, the CSO of

Rapid7 and chief architect of Metasploit.

Maintainers of the Rails framework are@o update their systems as so@o

arstechnica

Reasoning About Safety

- How can we have confidence that our code executes in a safe (and correct,

ideally) fashion?

Approach: build up confidence on a function-by-function / module-by-module
basis

Modularity provides boundaries for our reasoning:
* Preconditions: what must hold for function to operate correctly
* Postconditions: what holds after function completes

These basically describe a contract for using the module

Notions also apply to individual statements (what must hold for correctness;
what holds after execution)
« Stmt #1’s postcondition should logically imply Stmt #2’s precondition
* Invariants: conditions that always hold at a given point in a function

Computer Science 161 Fall 2016 Nicholas Weaver

int deref (int *p) {
return *p;

Precondition?

16

Computer Science 161 Fall 2016 Nicholas Weaver

/* requires: p != NULL
(and p a valid pointer)
*/
int deref (int *p) {
return *p;

Precondition: what needs to hold for function
to operate correctly

17

Computer Science 161 Fall 2016

void *mymalloc(size t n) {
void *p = malloc(n) ;
if ('p) { perror("malloc"),; exit(l); }
return p;

18

ComputerScienceteiFalzoe __ _ ____ __NicholasWeaver
/*» ensures: retval '= NULL (and a valid pointer) */
void *mymalloc(size t n) {
void *p = malloc(n) ;
if ('p) { perror("malloc"),; exit(l); }
return p;

Postcondition: what the function promises will
hold upon its return

19

Computer Science 161 Fall 2016

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

20

Computer Science 161 Fall 2016

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

Nicholas Weaver

21

Computer Science 161 Fall 2016

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access?

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

Nicholas Weaver

22

Computer Science 161 Fall 2016

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

Nicholas Weaver

23

Computer Science 161 Fall 2016

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
[* 22 */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires?

(3) Propagate requirement up to beginning of function

Nicholas Weaver

24

Computer Science 161 Fall 2016 Nicholas Weaver

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: a !'= NULL &&
0 <=1i && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

25

ComputerScienceteiFalzoe __ _ ____ __NicholasWeaver
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: a '= NULL &&
0 <= i && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

26

Computer Science 161 Fall 2016 Nicholas Weaver

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: a '= NULL &é&
0 <= i && i < size(a) */
total += a[i];
return total;

Let’s simplify, given that a never changes. (It gets much worse when we have

multiple threads) 27

Computer Science 161 Fall 2016

/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];
return total;

28

Computer Science tetFalzoe _ ___ ________________________________icholas Weaver
/* requires: a '= NULL */
int sum(int a[], size t n) ({
int total = 0;
for (size t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[1i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

29

Computer saiencetet Fanzore s wee
/* requires: a '= NULL */
int sum(int a[], size t n) { N
int total = 0;)
for (size t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

30

Computer saiencetet Fanzore s wee
/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += af[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

31

Computer Science 161 Fall 2016 Nicholas Weaver

/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];
return total;

The 0 <= part is clear, so let’s focus for now on the rest.
32

Computer Science 161 Fall 2016

/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: i < size(a) */
total += a[i];
return total;

33

ComputorssiencetgtFaizoe
/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++) N
/* requires: i < size(a) */ °
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

34

ComputorscisnceterFalzoe
/* requires: a '= NULL */
int sum(int a[], size t n) ({
int total = 0; 1?
for (size t i=0; i<n; i++) z
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?
35

Computer Science 161 Fall 2016 Nicholas Weaver

/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;)
for (size t i=0; i<n; i++)]
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

36

Computer Science 161 Fall 2016

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_ t n) {
int total = 0;
for (size t i=0; i<n; i++) ’?
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

37

Computer Science 161 Fall 2016 Nicholas Weaver

/* requires: a '= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0; ’7

for (size t i=0; i<n; i++) ¢
/* invariant?: i1 < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;

What abouti<n ?

38

Computer Science 161 Fall 2016 Nicholas Weaver

/* requires: a '= NULL && n <= size(a) */
int sum(int a[], size t n) {

int total = 0; ,?

for (size t i=0; i<n; i++) -

/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;

}

What about i <n ? That follows from the loop condition.

39

Computersciencoterrarze
/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) ({
int total = 0; .
for (size t i=0; i<n; i++) e
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

At this point we know the proposed invariant will always hold...

40

Computer Science 161 Fall 2016

/* requires: a '= NULL && n <=
int sum(int a[], size t n) ({
int total = 0;
for (size t i=0; i<n; i++)
/* invariant: a '= NULL &&
0 <=1 && 1 < n && n <=
total += af[i];
return total;

}

... and we’re done!

size(a) */

size(a) */

41

Computer Science 161 Fall 2016 Nicholas Weaver

/* requires: a '= NULL && n <= size(a) */
int sum(int a[], size t n) ({
int total = 0;
for (size t i=0; i<n; i++)
/* invariant: a '= NULL &&
0 <=1 && 1 < n && n <= size(a) */
total += a[i];
return total;

}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.
Induction: show that postcondition of last statement of

loop plus loop test condition implies invariant.
42

Computer Science 161 Fall 2016

int sumderef (int *a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
total += *(a[i]);
return total;

43

Computer Science 161 Fall 2016

/* requires: a '= NULL &é&
size(a) >= n &é&
2?27
*/
int sumderef (int *a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
total += *(a[1i]);
return total;

44

Computer Science 161 Fall 2016

/* requires: a '= NULL &é&

size(a) >= n &&

for all jJj in 0..n-1, a[j] '= NULL
*/
int sumderef (int *a[], size t n) {

int total = 0;

for (size t i=0; i<n; i++)

total += *(a[1i]);
return total;

45

char *tbl[N]; /* N > 0, has type int */

Computer Science 161 Fall 2016

int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {

int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

46

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: ?°?? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

}

What is the correct postcondition for hash()?
(@) 0 <=retval <N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.

Discuss with a partner.
/ v) s

} 47

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0)
}

48

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0)
}

49

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0)
}

50

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {

int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* 0 <= h */

return h % N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0)
}

51

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures:

int hash(char *s) {

}

int h = 17; /* 0
while (*s) /* 0
h = 257*h + (*s++) + 3; /* 0

return h $ N; /* 0 <= retval < N

bool search (char *s) {

}

int i = hash(s);
return tbl[i] && (strcmp(tbl[i],

0 <= retval && retval < N */

<= h */
<= h */
<= h */
*/

s)==0) ;

52

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {

int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* 0 <=2 h */

return h $ N; /* 0 <= retval < N */
}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0)
}

53

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures:

int hash(char *s) {

}

0 <= retval && retval < N */

int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* */
return h $ N; /* 0 <= retval < *x /
bool search (char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0)

}

54

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures:

int hash(char *s) {

}

0 <= retval && retval < N */

int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* */
return h $ N; /* 0 <Ml < * /
bool search (char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0)

}

55

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures: I} retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; €= h */

return h $ N; xretva < N */

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

56

char *tbl[N];

Computer Science 161 Fall 2016

/* ensures:

unsigned int hash (char *s) {

}

unsigned int h = 17; /* 0
while (*s) /* 0
h = 257*h + (*s++) + 3; /* 0

return h $ N; /* 0 <= retval < N

bool search (char *s) {

}

unsigned int i = hash(s) ;
return tbl[i] && (strcmp(tbl[i],

0 <= retval && retval < N */

<= h */
<= h */
<= h */
*/

s)==0) ;

57

Computer Science 161 Fall 2016 Nicholas Weaver

void foo(int *a) {

int i, j, sum;

sum = 0;

J =0;

for(i1 = 1; i < 10; ++1i){
sum += a[j];
J = al3jl;

}

58

Common Coding Errors

Computer Science 161 Fall 2016

- Memory safety vulnerabilities

* |n a "safe" language they cause immediate faults
May result in a "denial of service", aka crash, but not control flow hijack

* In an "unsafe" language they may cause unpredictable (and likely exploitable)
errors

- Input validation vulnerabilities

* "You mean you trusted me when | said my name was "robert'); drop table
students;--?7?1?"

+ Time-of-Check to Time-of-Use (TOCTTOU) vulnerability
(later)

59

Input Validation Vulnerabillities

Computer Science 161 Fall 2016

- Program requires certain assumptions on inputs to run
properly

- Programmer forgets to check inputs are valid => program
gets exploited

- Example:

— Bank money transfer: Check that amount to be transferred is non-
negative and no larger than payer’s current balance

— SQLi: Accept string as input into an SQL command
— Format String vulnerability: Accept string as the format string for printf

60

If Time Left: Real World Security Research:
Click Trajectories

Computer Science 161 Fall 2016

Nicholas Weaver

0 Spam Message

From: fvcjleocRacme.com
To: recipientBexample.com
Subject: VIAGRA ® Official Site

BEST PRICE ON NI \‘\;_l
-
~ o » @

- pam—
& Vine

Botnet http://medicshopnerx.ru
@ Click

Advertising

>
Click support

Realization I

