
Computer Science 161 Fall 2016 Popa and Weaver

Monitoring For Attacks
(Slides mostly stolen from 

Dave Wagner)

1

Computer Science 161 Fall 2016 Popa and Weaver

The Security Triad...

2

Stolen from:  
Daniel Schatz

@virturity

Computer Science 161 Fall 2016 Popa and Weaver

The Next Two Lectures...

• Today: The technology of detecting attacks

• Tuesday: The abuse of scalable NIDS

• NSA bulk surveillance: XKEYSCORE

• Chinese censorship: The "Great Firewall of China"

• Chinese attack: The "Great Cannon"

3

Structure of 
FooCorp Web Services

Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

8. 200 OK 
 Output of bin/amazeme

Computer Science 161 Fall 2016 Popa and Weaver

Network Intrusion Detection

• Approach #1: look at the network traffic

• (a “NIDS”: rhymes with “kids”)

• Scan HTTP requests

• Look for “/etc/passwd” and/or “../../” in requests

• Indicates attempts to get files that the web server shouldn't provide

5

Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy 
of incoming/outgoing 
HTTP traffic

8. 200 OK 
 Output of bin/amazeme

Structure of 
FooCorp Web Services

Computer Science 161 Fall 2016 Popa and Weaver

Network Intrusion Detection

• Approach #1: look at the network traffic

• (a “NIDS”: rhymes with “kids”)

• Scan HTTP requests

• Look for “/etc/passwd” and/or “../../”

• Pros:

• No need to touch or trust end systems

• Can “bolt on” security

• Cheap: cover many systems w/ single monitor

• Cheap: centralized management

7

Computer Science 161 Fall 2016 Popa and Weaver

How They Work: Scalable Network Intrusion
Detection Systems

8

Tap

High Volume Filter

NIDS NodeNIDS NodeNIDS Node

Load Balancer

Is Not BitTorrent?

H(SIP, DIP)

Do this in OpenFlow:  
100 Gbps install 
at LBNL

Linear Scaling:  
10x the money...
10x the bandwidth!
1u gives 1-5 Gbps

Computer Science 161 Fall 2016 Popa and Weaver

Inside the NIDS

9

220

GET

GET HT TP /fu bar/ 1.1..

HTTP /b az/?id= 1f413 1.1...

mail.domain.target ESMTP Sendmail...

HTTP Request
URL = /fubar/
Host =
HTTP Request
URL = /baz/?id=...
ID = 1f413
Sendmail
From = someguy@...
To = otherguy@...

Computer Science 161 Fall 2016 Popa and Weaver

Network Intrusion Detection (NIDS)

• NIDS has a table of all active connections, 
and maintains state for each

• e.g., has it seen a partial match of /etc/passwd?

• What do you do when you see a new packet not associated
with any known connection?

• Create a new connection: when NIDS starts it doesn’t know what
connections might be existing

10

Computer Science 161 Fall 2016 Popa and Weaver

Evasion

• What should NIDS do if it sees a
RST packet?

• Assume RST will be received?

• Assume RST won’t be received?

• Other (please specify)

11

NIDS

/etc/p

RST

Computer Science 161 Fall 2016 Popa and Weaver

Evasion

• What should NIDS do if it sees
this? 

• Alert – it’s an attack

• No alert – it’s all good

• Other (please specify)

12

NIDS

/%65%74%63/%70%61%73%73%77%64

Computer Science 161 Fall 2016 Popa and Weaver

Evasion

• Evasion attacks arise when you have “double parsing”  

• Inconsistency - interpreted differently between the monitor
and the end system 

• Ambiguity - information needed to interpret correctly is
missing

13

Computer Science 161 Fall 2016 Popa and Weaver

Evasion Attacks (High-Level View)

• Some evasions reflect incomplete analysis

• In our FooCorp example, hex escapes or “..////.//../” alias

• In principle, can deal with these with implementation care (make sure we fully

understand the spec)

• Of course, in practice things inevitably fall through the cracks!

• Some are due to imperfect observability

• For instance, if what NIDS sees doesn’t exactly match what arrives at the

destination
14

Computer Science 161 Fall 2016 Popa and Weaver

Network-Based Detection

• Issues:

• Scan for “/etc/passwd”?

• What about other sensitive files?

• Scan for “../../”?

• Sometimes seen in legit. requests (= false positive)

• What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

• Okay, need to do full HTTP parsing

• What about “..///.///..////”?

• Okay, need to understand Unix filename semantics too!

• What if it’s HTTPS and not HTTP?

• Need access to decrypted text / session key – yuck!

15

Computer Science 161 Fall 2016 Popa and Weaver

Host-based Intrusion Detection

• Approach #2: instrument the web server

• Host-based IDS (sometimes called “HIDS”)

• Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

16

Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

4. amazeme.exe? 
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation
added inside here

6. Output of bin/amazeme sent back

Structure of 
FooCorp Web Services

Computer Science 161 Fall 2016 Popa and Weaver

Host-based Intrusion Detection

• Approach #2: instrument the web server

• Host-based IDS (sometimes called “HIDS”)

• Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

• Pros:

• No problems with HTTP complexities like %-escapes

• Works for encrypted HTTPS!

• Issues:

• Have to add code to each (possibly different) web server

• And that effort only helps with detecting web server attacks

• Still have to consider Unix filename semantics (“..////.//”)

• Still have to consider other sensitive files

18

Computer Science 161 Fall 2016 Popa and Weaver

Log Analysis

• Approach #3: each night, script runs to analyze log files
generated by web servers

• Again scan ?arguments sent to back-end programs

19

Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

bin/amazeme -p xxx

Run Nightly Analysis 
Of Logs Here

Structure of 
FooCorp Web Services

Computer Science 161 Fall 2016 Popa and Weaver

Log Analysis

• Approach #3: each night, script runs to analyze log files generated by web
servers

• Again scan ?arguments sent to back-end programs

• Pros:

• Cheap: web servers generally already have such logging facilities built into them

• No problems like %-escapes, encrypted HTTPS

• Issues:

• Again must consider filename tricks, other sensitive files

• Can’t block attacks & prevent from happening

• Detection delayed, so attack damage may compound

• If the attack is a compromise, then malware might be able to alter the logs before they’re analyzed

• (Not a problem for directory traversal information leak example)

• Also can be mitigated by using a separate log server

21

Computer Science 161 Fall 2016 Popa and Weaver

System Call Monitoring (HIDS)

• Approach #4: monitor system call activity of backend
processes

• Look for access to /etc/passwd

22

Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of
system calls accessing files

Structure of 
FooCorp Web Services

Computer Science 161 Fall 2016 Popa and Weaver

System Call Monitoring (HIDS)

• Approach #4: monitor system call activity of backend processes

• Look for access to /etc/passwd

• Pros:

• No issues with any HTTP complexities

• May avoid issues with filename tricks

• Attack only leads to an “alert” if attack succeeded

• Sensitive file was indeed accessed

• Issues:

• Maybe other processes make legit accesses to the sensitive files (false positives)

• Maybe we’d like to detect attempts even if they fail?

• “situational awareness”

24

Computer Science 161 Fall 2016 Popa and Weaver

Detection Accuracy

• Two types of detector errors:

• False positive (FP): alerting about a problem when in fact there was no problem

• False negative (FN): failing to alert about a problem when in fact there was a problem

• Detector accuracy is often assessed in terms of rates at which
these occur:

• Define Ι to be the event of an instance of intrusive behavior occurring (something we

want to detect)

• Define Α to be the event of detector generating alarm

• Define:

• False positive rate = P[Α|¬Ι]

• False negative rate = P[¬Α| Ι]

25

Computer Science 161 Fall 2016 Popa and Weaver

Perfect Detection

• Is it possible to build a detector for our example with a false
negative rate of 0%?

• Algorithm to detect bad URLs with 0% FN rate:

void my_detector_that_never_misses(char *URL) 
{  
 printf("yep, it's an attack!\n");  
}

• In fact, it works for detecting any bad activity with no false negatives! Woo-hoo!

• Wow, so what about a detector for bad URLs that has NO
FALSE POSITIVES?!

• printf("nope, not an attack\n");

26

Computer Science 161 Fall 2016 Popa and Weaver

Detection Tradeoffs

• The art of a good detector is achieving an effective balance
between FPs and FNs

• Suppose our detector has an FP rate of 0.1% and an FN
rate of 2%. Is it good enough? Which is better, a very low
FP rate or a very low FN rate?

• Depends on the cost of each type of error …

• E.g., FP might lead to paging a duty officer and consuming hour of their time; FN

might lead to $10K cleaning up compromised system that was missed

• … but also critically depends on the rate at which actual attacks occur in

your environment
27

Computer Science 161 Fall 2016 Popa and Weaver

Base Rate Fallacy

• Suppose our detector has a FP rate of 0.1% (!) 
and a FN rate of 2% (not bad!)

• Scenario #1: our server receives 1,000 URLs/day, and 5 of them are attacks

• Expected # FPs each day = 0.1% * 995 ≈ 1

• Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)

• Pretty good!

• Scenario #2: our server receives 10,000,000 URLs/day, and 5 of them are
attacks

• Expected # FPs each day ≈ 10,000 :-(

• Nothing changed about the detector; only our environment changed

• Accurate detection very challenging when base rate of activity we want to detect is quite low

28

Computer Science 161 Fall 2016 Popa and Weaver

Composing Detectors: 
There Is No Free Lunch
• "Hey, what if we take two (bad) detectors and combine

them?"

• Can we turn that into a good detector?

• Note: Assumes the detectors are independent

• Parallel composition: Either detector triggers an alert

• Reduces false negative rate (either one alerts works)

• Increases false positive rate!

• Series composition: both detectors must trigger for an alert

• Reduces false positive rate (since both must false positive)

• Increases false negative rate!

29

Computer Science 161 Fall 2016 Popa and Weaver

Styles of Detection: Signature-Based

• Idea: look for activity that matches the structure of a known attack

• Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET 139
flow:to_server,established
content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs

30

Computer Science 161 Fall 2016 Popa and Weaver

Signature-Based Detection

• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?

• Conceptually simple

• Takes care of known attacks (of which there are zillions)

• Easy to share signatures, build up libraries

• What’s problematic about this approach?

• Blind to novel attacks

• Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions

• Simpler versions look at low-level syntax, not semantics

• Can lead to weak power (either misses variants, or generates lots of false positives)

31

Computer Science 161 Fall 2016 Popa and Weaver

Vulnerability Signatures

• Idea: don’t match on known attacks, match on known problems

• Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msg:"Web-IIS ISAPI .ida attempt"
reference:bugtraq,1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

• That is, match URIs that invoke *.ida?*, have more than 239 bytes of payload, and
have ACK set (maybe others too)

• This example detects any* attempt to exploit a particular buffer overflow in IIS web
servers

• Used by the “Code Red” worm

• (Note, signature is not quite complete: also worked for *.idb?*)

32

Computer Science 161 Fall 2016 Popa and Weaver

Styles of Detection: Anomaly-Based

• Idea: attacks look peculiar.

• High-level approach: develop a model of normal behavior (say

based on analyzing historical logs). Flag activity that deviates
from it.

• FooCorp example: maybe look at distribution of characters in URL
parameters, learn that some are rare and/or don’t occur repeatedly

• If we happen to learn that ‘.’s have this property, then could detect the attack even

without knowing it exists

• Big benefit: potential detection of a wide range of attacks,
including novel ones

33

Computer Science 161 Fall 2016 Popa and Weaver

Anomaly Detection Problems

• Can fail to detect known attacks

• Can fail to detect novel attacks, if don’t happen to look peculiar

along measured dimension

• What happens if the historical data you train on includes attacks?

• Base Rate Fallacy particularly acute: if prevalence of attacks is

low, then you’re more often going to see benign outliers

• High FP rate

• OR: require such a stringent deviation from “normal” that most attacks are missed (high FN

rate)

• Proves great subject for academic papers but not generally used
34

Computer Science 161 Fall 2016 Popa and Weaver

Specification-Based Detection

• Idea: don’t learn what’s normal; specify what’s allowed

• FooCorp example: decide that all URL parameters sent to

foocorp.com servers must have at most one ‘/’ in them

• Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?

• Can detect novel attacks

• Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematic about this approach?

• Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)

35

Computer Science 161 Fall 2016 Popa and Weaver

Styles of Detection: Behavioral

• Idea: don’t look for attacks, look for evidence of compromise

• FooCorp example: inspect all output web traffic for any lines that

match a passwd file

• Example for monitoring user shell keystrokes: 
	unset HISTFILE

• Example for catching code injection: look at sequences of system
calls, flag any that prior analysis of a given program shows it can’t
generate

• E.g., observe process executing read(), open(), write(), fork(), exec() …

• … but there’s no code path in the (original) program that calls those in exactly that order!

36

Computer Science 161 Fall 2016 Popa and Weaver

Behavioral-Based Detection

• What’s nice about this approach?

• Can detect a wide range of novel attacks

• Can have low false positives

• Depending on degree to which behavior is distinctive

• E.g., for system call profiling: no false positives!

• Can be cheap to implement

• E.g., system call profiling can be mechanized

• What’s problematic about this approach?

• Post facto detection: discovers that you definitely have a problem, w/ no opportunity to prevent it

• Brittle: for some behaviors, attacker can maybe avoid it

• Easy enough to not type “unset HISTFILE”

• How could they evade system call profiling?

• Mimicry: adapt injected code to comply w/ allowed call sequences (and can be automated!)

37

Computer Science 161 Fall 2016 Popa and Weaver

Summary of Evasion Issues

• Evasions arise from uncertainty (or incompleteness) because detector must
infer behavior/processing it can’t directly observe

• A general problem any time detection separate from potential target

• One general strategy: impose canonical form (“normalize”)

• E.g., rewrite URLs to expand/remove hex escapes

• E.g., enforce blog comments to only have certain HTML tags

• Another strategy: analyze all possible interpretations rather than assuming one

• E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …

• Another strategy: Flag potential evasions

• So the presence of an ambiguity is at least noted

• Another strategy: fix the basic observation problem

• E.g., monitor directly at end systems

38

Computer Science 161 Fall 2016 Popa and Weaver

Inside a Modern HIDS (“AV”)

• URL/Web access blocking:

• Prevent users from going to known bad locations

• Protocol scanning of network traffic (esp. HTTP)

• Detect & block known attacks

• Detect & block known malware communication

• Payload scanning

• Detect & block known malware

• (Auto-update of signatures for these)

• Cloud queries regarding reputation

• Who else has run this executable and with what results?

• What’s known about the remote host / domain / URL?

39

Computer Science 161 Fall 2016 Popa and Weaver

Inside a Modern HIDS

• Sandbox execution

• Run selected executables in constrained/monitored environment

• Analyze:

• System calls

• Changes to files / registry

• Self-modifying code (polymorphism/metamorphism)

• File scanning

• Look for malware that installs itself on disk

• Memory scanning

• Look for malware that never appears on disk

• Runtime analysis

• Apply heuristics/signatures to execution behavior

40

Computer Science 161 Fall 2016 Popa and Weaver

Inside a Modern NIDS

• Deployment inside network as well as at border

• Greater visibility, including tracking of user identity

• Full protocol analysis

• Including extraction of complex embedded objects

• In some systems, 100s of known protocols

• Signature analysis (also behavioral)

• Known attacks, malware communication, blacklisted hosts/domains

• Known malicious payloads

• Sequences/patterns of activity

• Shadow execution (e.g., Flash, PDF programs)

• Extensive logging (in support of forensics)

• Auto-update of signatures, blacklists

41

Computer Science 161 Fall 2016 Popa and Weaver

NIDS vs. HIDS

• NIDS benefits:

• Can cover a lot of systems with single deployment

• Much simpler management

• Easy to “bolt on” / no need to touch end systems

• Doesn’t consume production resources on end systems

• Harder for an attacker to subvert / less to trust

• HIDS benefits:

• Can have direct access to semantics of activity

• Better positioned to block (prevent) attacks

• Harder to evade

• Can protect against non-network threats

• Visibility into encrypted activity

• Performance scales much more readily (no chokepoint)

• No issues with “dropped” packets

42

Computer Science 161 Fall 2016 Popa and Weaver

Key Concepts for Detection

• Signature-based vs anomaly detection 
(blacklisting vs whitelisting)

• Evasion attacks

• Evaluation metrics: False positive rate, false negative rate

• Base rate problem

43

Computer Science 161 Fall 2016 Popa and Weaver

Detection vs. Blocking

• If we can detect attacks, how about blocking them?

• Issues:

• Not a possibility for retrospective analysis (e.g., nightly job that looks at logs)

• Quite hard for detector that’s not in the data path

• E.g. How can NIDS that passively monitors traffic block attacks?

• Change firewall rules dynamically; forge RST packets

• And still there’s a race regarding what attacker does before block

• False positives get more expensive

• You don’t just bug an operator, you damage production activity

• Today’s technology/products pretty much all offer blocking

• Intrusion prevention systems (IPS - “eye-pee-ess”)

44

Computer Science 161 Fall 2016 Popa and Weaver

Can We Build An IPS 
That Blocks All Attacks?

45

Computer Science 161 Fall 2016 Popa and Weaver

An Alternative Paradigm

• Idea: rather than detect attacks, launch them yourself!

• Vulnerability scanning: use a tool to probe your own systems with a wide range of

attacks, fix any that succeed

• Pros?

• Accurate: if your scanning tool is good, it finds real problems

• Proactive: can prevent future misuse

• Intelligence: can ignore IDS alarms that you know can’t succeed

• Issues?

• Can take a lot of work

• Not so helpful for systems you can’t modify

• Dangerous for disruptive attacks

• And you might not know which these are …

• In practice, this approach is prudent and widely used today

• Good complement to also running an IDS

46

Computer Science 161 Fall 2016 Popa and Weaver

Styles of Detection: Honeypots

• Idea: deploy a sacrificial system that has no operational purpose

• Any access is by definition not authorized …

• … and thus an intruder

• (or some sort of mistake)

• Provides opportunity to:

• Identify intruders

• Study what they’re up to

• Divert them from legitimate targets

47

Computer Science 161 Fall 2016 Popa and Weaver

Honeypots

• Real-world example: some hospitals enter fake records with celebrity names …

• … to entrap staff who don’t respect confidentiality

• What’s nice about this approach?

• Can detect all sorts of new threats

• What’s problematic about this approach?

• Can be difficult to lure the attacker

• Can be a lot of work to build a convincing environment

• Note: both of these issues matter less when deploying honeypots for automated attacks

• Because these have more predictable targeting & env. needs

• E.g. “spamtraps”: fake email addresses to catching spambots

• A great honeypot: An unsecured Bitcoin wallet...

• When your bitcoins get stolen, you know you got compromised!

48

Computer Science 161 Fall 2016 Popa and Weaver

Forensics

• Vital complement to detecting attacks: figuring out what
happened in wake of successful attack

• Doing so requires access to rich/extensive logs

• Plus tools for analyzing/understanding them

• It also entails looking for patterns and understanding the
implications of structure seen in activity

• An iterative process (“peeling the onion”)

49

Computer Science 161 Fall 2016 Popa and Weaver

Other Attacks on IDSs

• DoS: exhaust its memory

• IDS has to track ongoing activity

• Attacker generates lots of different forms of activity, consumes all of its memory

• E.g., spoof zillions of distinct TCP SYNs …

• … so IDS must hold zillions of connection records

• DoS: exhaust its processing

• One sneaky form: algorithmic complexity attacks

• E.g., if IDS uses a predictable hash function to manage connection records …

• … then generate series of hash collisions

• Code injection (!)

• After all, NIDS analyzers take as input network traffic under attacker’s control …

• One of the CS194 projects will be on this topic...

50

Computer Science 161 Fall 2016 Popa and Weaver

51

