
Computer Science 161 Fall 2017 Weaver

Web Security

1

Computer Science 161 Fall 2017 Weaver

Before We Begin: 
Digression on self-propagating attacks...
• Later on in the semester we will discuss worms, viruses, etc...

• Malicious attacks designed to spread from computer to computer

• The analogy to actual viruses is remarkably close

• Malicious attacks designed to spread from cell to cell and person to person

• Immune system operates on recognizing "this is bad" and responds to it

• One of the deadlier biological attacks is influenza

• It changes from year to year on a quite rapid basis, as a way of avoiding the "this is bad"

detector

• And you all are young and healthy, it probably won't kill you...

• But it will put you out of action for a week+, and may make you wish you were dead

• And, if you want happy reading, look up the 1918 flu...

2

Computer Science 161 Fall 2017 Weaver

So Get A Flu Shot!

• Tang center offers drop-in Flu clinics

• https://uhs.berkeley.edu/medical/flu-shots-tang: Free with SHIP, $30 otherwise

• Next one: Wednesday, October 4, 10am-2pm, Eshleman Hall (Students only)

• Every pharmacy around offers cheap or free

• Non-SHIP insurance, just walk into CVS or Walgreens with your insurance card

• This also grants herd immunity:

• If enough people are immune, this also protects those who aren't immune

• So it helps others, not just yourself

• I should ask on the Midterm:

• "Did I get a Flu shot for the 2017/2018 Flu season?"

3

Computer Science 161 Fall 2017 Weaver

SQL Injection: 
Better Defenses
• Idea: Let's take execve's ideas and apply them to SQL...

• ResultSet getProfile(Connection conn, String arg_user) 

{  
 String query = "SELECT AcctNum FROM Customer WHERE 
 Balance < 100 AND Username = ?";  
 PreparedStatement p = conn.prepareStatement(query); 
 p.setString(1, arg_user);  
 return p.executeQuery();  
}

• This is a "prepared statement"

4

Untrusted user input

Confines Input to a Single Value

Binds the input to the value

Computer Science 161 Fall 2017 Weaver

Parse Tree for a Prepared Statement

5

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username ?

Note: prepared statement only allows ?’s at leaves,
not internal nodes. So structure of tree is fixed.

Computer Science 161 Fall 2017 Weaver

So What Happens To 
Bobby Tables?

6

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username robert'; drop ta..

Computer Science 161 Fall 2017 Weaver

Parsing Bobby Tables...

7

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username robert'; drop ta..

This will never be true (assuming
no bizarre Usernames!), so no
database records will be returned
And it will work correctly, too, if the
student actually is little bobby
tables!

Computer Science 161 Fall 2017 Weaver

What is the Web?

• A platform for deploying applications and sharing information, portably
and ?securely?

• Really a three part distributed programming problem:

• The Client Browser

• The Web Server

• The Server Backend

8

client browser web server

Computer Science 161 Fall 2017 Weaver

HTTP  
(Hypertext Transfer Protocol)

9

A common data communication protocol on the web

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBANK

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

Computer Science 161 Fall 2017 Weaver

URLs:  
Global Network Identifiers

10

Protocol Hostname

Port Path

Query
Fragment

HTTP://www.fubar.com:80/fubar/baz?wtf#go

• Protocol: Mandatory

• HTTP, HTTPS, FTP, etc...

• Hostname: Mandatory

• Either a resolvable domain name or an IP

address

• Port: Optional

• Each protocol has a default port

• Path: Mandatory

• But can be / for the root

• Query: Optional

• Sent to Server

• Fragrment

• Local to the client

• Only accessible to scripts in the web page

Computer Science 161 Fall 2017 Weaver

HTTP

11

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBANK

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

Computer Science 161 Fall 2017 Weaver

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap,
 image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Chrome/21.0.1180.75 (Macintosh;
 Intel Mac OS X 10_7_4)
Host: www.safebank.com
Referer: http://www.google.com?q=dingbats

HTTP Request

12

Method Path HTTP version Headers

Data – none for GET
Blank line

GET: no side
effect
(supposedly, HA)

POST: possible
side effect,
includes
additional data

Computer Science 161 Fall 2017 Weaver

HTTP

13

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBANK

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

Computer Science 161 Fall 2017 Weaver

HTTP Response

14

HTTP/1.0 200 OK
Date: Sun, 12 Aug 2012 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/
5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT
Set-Cookie: session=44ebc991
Content-Length: 2543

<HTML> This is web content formatted using html
</HTML>

HTTP version Status code Reason phrase
Headers

Data

Can be a webpage, image,
audio, executable ...

“Cookie” – state that
server asks client to
store, and return in
the future
(discussed later)

Computer Science 161 Fall 2017 Weaver

Web page

15

web page

HTML

CSS

Javascript

Computer Science 161 Fall 2017 Weaver

HTML

16

A language to create structured documents
One can embed images, objects, or create interactive forms

index.html
<html>
 <body>
 <div>
 foo
 Go to Google!
 </div>
 <form>
 <input type="text" />
 <input type="radio" />
 <input type="checkbox" />
 </form>
 </body>
</html>

Computer Science 161 Fall 2017 Weaver

CSS (Cascading Style Sheets)

17

Language used for describing the presentation of a document

index.css

p.serif {
font-family: "Times New Roman", Times, serif;
}
p.sansserif {
font-family: Arial, Helvetica, sans-serif;
}

Computer Science 161 Fall 2017 Weaver

Javascript

18

Programming language used to manipulate
web pages. It is a high-level, untyped and
interpreted language with support for objects.

Supported by all web browsers
<script>
function myFunction()
{ document.getElementById("demo").innerHTML = ”Text
changed.";
}
</script>

Very powerful!

Computer Science 161 Fall 2017 Weaver

HTTP

19

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.1 200 OK
<HTML> . . . </HTML>

SAFEBANK

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

webpage

Computer Science 161 Fall 2017 Weaver

Page rendering

20

page

HTML

CSS

Javascript

HTML Parser

CSS Parser

JS Engine

DOM

modifications to
the DOM
(Document 
Object 
Model)

Painter
bitmap

Computer Science 161 Fall 2017 Weaver

DOM (Document Object Model)

Cross-platform model for representing and interacting with objects in HTML

21

|-> Document
 |-> Element (<html>)
 |-> Element (<body>)
 |-> Element (<div>)
 |-> text node
 |-> Form
 |-> Text-box
 |-> Radio Button
 |-> Check Box

 DOM Tree
HTML
<html>
 <body>
 <div>
 foo
 </div>
 <form>
 <input type="text” />
 <input type=”radio” />
 <input type=”checkbox” />
 </form>
 </body>
</html>

Computer Science 161 Fall 2017 Weaver

The power of Javascript

Get familiarized with it so that you can think of all the attacks
one can do with it.

22

Computer Science 161 Fall 2017 Weaver

What can you do with Javascript?

23

Almost anything you want to the DOM!

A JS script embedded on a page can
modify in almost arbitrary ways the DOM
of the page.

The same happens if an attacker manages
to get you load a script into your page.

w3schools.com has nice interactive
tutorials

Computer Science 161 Fall 2017 Weaver

Example of what Javascript can do…

24

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"
onclick="document.getElementById('demo').innerHTML =
'Hello JavaScript!'">
 Click Me!</button>

Can change HTML content:

DEMO from 
http://www.w3schools.com/js/js_examples.asp

Computer Science 161 Fall 2017 Weaver

Other examples

25

Can change images
Can chance style of elements
Can hide elements
Can unhide elements
Can change cursor...
 

Basically, can do anything it wants to
the DOM

Computer Science 161 Fall 2017 Weaver

Another example: can access cookies  

26

Read cookie with JS:
var x = document.cookie;

Change cookie with JS:
document.cookie = "username=John Smith; expires=Thu, 18
Dec 2013 12:00:00 UTC; path=/";

Computer Science 161 Fall 2017 Weaver

Frames

27

• Enable embedding a page within a
page

<iframe src="URL"></iframe>

src = google.com/…
name = awglogin

outer page

inner page

Computer Science 161 Fall 2017 Weaver

Frames

28

• Modularity
– Brings together content from multiple sources
– Client-side aggregation

• Delegation
– Frame can draw only inside its own rectangle

src = 7.gmodules.com/...
name = remote_iframe_7

Computer Science 161 Fall 2017 Weaver

Frames

29

• Outer page can specify only sizing
and placement of the frame in the
outer page

• Frame isolation: Outer page cannot
change contents of inner page; inner
page cannot change contents of
outer page

Computer Science 161 Fall 2017 Weaver

Desirable security goals

• Integrity: malicious web sites should not be able to tamper
with integrity of our computers or our information on other web
sites

• Confidentiality: malicious web sites should not be able to learn
confidential information from our computers or other web sites

• Privacy: malicious web sites should not be able to spy on us or
our online activities

• Availability: malicious parties should not be able to keep us
from accessing our web resources

30

Computer Science 161 Fall 2017 Weaver

Security on the web

• Risk #1: we don’t want a malicious site to be able to trash
files/programs on our computers

• Browsing to awesomevids.com (or evil.com) should not infect our

computers with malware, read or write files on our computers, etc...

• We generally assume an adversary can cause our browser to go to a web page

of the attacker's choosing

• Mitigation strategy

• Javascript is sandboxed: it is not allowed to access files etc...

• Browser code tries to avoid bugs:

• Privilege separation, automatic updates

• Reworking into safe languages (rust)

31

Computer Science 161 Fall 2017 Weaver

Security on the web

• Risk #2: we don’t want a malicious site to be able to spy on
or tamper with our information or interactions with other
websites

• Browsing to evil.com should not let evil.com spy on our emails in Gmail
or buy stuff with our Amazon accounts

• Defense: Same Origin Policy

• An after the fact isolation mechanism enforced by the web browser

32

Computer Science 161 Fall 2017 Weaver

Security on the web

• Risk #3: we want data stored on a web server to be
protected from unauthorized access

• Defense: server-side security

33

Computer Science 161 Fall 2017 Weaver

Same-origin policy

• Each site in the browser is isolated from all others

34

wikipedia.org

bankofamerica.com

browser:

security
barrier

Computer Science 161 Fall 2017 Weaver

Same-origin policy

• Multiple pages from the same site are not isolated

35

wikipedia.org

wikipedia.org

browser:

No security 
barrier

Computer Science 161 Fall 2017 Weaver

Origin

• Granularity of protection for same origin policy

• Origin = protocol + hostname + port 
 
 
 

• Determined using string matching! If these match, it is
same origin; else it is not. Even though in some cases, it is
logically the same origin, if there is no string match, it is not.

36

http://coolsite.com:81/tools/info.html

protocol hostname port

Computer Science 161 Fall 2017 Weaver

• One origin should not be able to access the resources of
another origin

• Javascript on one page cannot read or modify pages from different origins.

• The contents of an iframe have the origin of the URL from which the iframe is

served; not the loading website.

Same-origin policy

37

Computer Science 161 Fall 2017 Weaver

Same-origin policy

• The origin of a page is derived from the URL it was loaded from

38

http://en.wikipedia.org

http://upload.wikimedia.org

Computer Science 161 Fall 2017 Weaver

Same-origin policy

• The origin of a page is derived from the URL it was loaded from

• Special case: Javascript runs with the origin of the page that loaded it

39

http://en.wikipedia.org

http://www.google-analytics.com

Computer Science 161 Fall 2017 Weaver

Assessing SOP

40

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org:81/ http://wikipedia.org:82/

http://wikipedia.org:81/ http://wikipedia.org/

except !

Computer Science 161 Fall 2017 Weaver

Origins of other components

• the image DOM element has the origin of
the embedding page, but the image content remains in the
remote origin

• So JavaScript can't read the photo, but sees a black box on the size

• iframe: origin of the URL from which the iframe is served;
not the loading website
• Data in an iframe from a different origin can not be accessed by the enclosing

page's JavaScript

41

Computer Science 161 Fall 2017 Weaver

42

Computer Science 161 Fall 2017 Weaver

Cross-origin communication

• Allowed through a narrow API: postMessage
• Receiving origin decides if to accept the message based on

source origin (correctness enforced by browser)

43

postMessage
("run this
script",
script)

Check origin, and request!

Computer Science 161 Fall 2017 Weaver

Web Server Threats

• What can happen?

• Compromise of underlying system

• Gateway to enabling attacks on clients

• Disclosure of sensitive or private information

• Impersonation (of users to servers, or vice versa)

• Defacement

• (not mutually exclusive)

44

Computer Science 161 Fall 2017 Weaver

Web Server Threats

• What can happen?

• Compromise of underlying system

• Gateway to enabling attacks on clients

• Disclosure of sensitive or private information

• Impersonation (of users to servers, or vice versa)

• Defacement
• (not mutually exclusive)

45

Computer Science 161 Fall 2017 Weaver

Often Done For Laughs

46

Computer Science 161 Fall 2017 Weaver

47

Computer Science 161 Fall 2017 Weaver

Web Server Threats

• What can happen?

• Compromise of underlying system

• Gateway to enabling attacks on clients

• Disclosure of sensitive or private information

• Impersonation (of users to servers, or vice versa)

• Defacement

• (not mutually exclusive)

• What makes the problem particularly tricky?

• Public access

48

Computer Science 161 Fall 2017 Weaver

49

Computer Science 161 Fall 2017 Weaver

Web Server Threats

• What can happen?

• Compromise of underlying system

• Gateway to enabling attacks on clients

• Disclosure of sensitive or private information

• Impersonation (of users to servers, or vice versa)

• Defacement

• (not mutually exclusive)

• What makes the problem particularly tricky?

• Public access

• Mission creep

50

Computer Science 161 Fall 2017 Weaver

51

Computer Science 161 Fall 2017 Weaver

52

Computer Science 161 Fall 2017 Weaver

53

Computer Science 161 Fall 2017 Weaver

54

Computer Science 161 Fall 2017 Weaver

55

Computer Science 161 Fall 2017 Weaver

56

Computer Science 161 Fall 2017 Weaver

57

Computer Science 161 Fall 2017 Weaver

Interacting With Web Servers

• An interaction with a web server is expressed in terms of a URL (plus
an optional data item)

• URL components:

http://coolsite.com/tools/info.html

58

Path to a resource

Here, the resource (“info.html”) is static
content = a fixed file returned by the server.

(Often static content is an HTML file = content plus
markup for how browser should “render” it.)

Computer Science 161 Fall 2017 Weaver

Interacting With Web Servers

• An interaction with a web server is expressed in terms of a URL (plus
an optional data item)

• URL components:

http://coolsite.com/tools/doit.php

59

Path to a resource

Resources can instead be dynamic  
 = server generates the page on-the-fly.

Some common frameworks for doing this: 
CGI = run a program or script, return its stdout
PHP = execute script in HTML templating language
 (PHP means PHP HTML Preprocessor)

Computer Science 161 Fall 2017 Weaver

Interacting With Web Servers

• An interaction with a web server is expressed in terms of a URL (plus
an optional data item)

• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

60

URLs for dynamic content
generally include arguments to
pass to the generation process

Computer Science 161 Fall 2017 Weaver

Interacting With Web Servers

• An interaction with a web server is expressed in terms of a URL (plus
an optional data item)

• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

61

First argument to doit.php

Computer Science 161 Fall 2017 Weaver

Interacting With Web Servers

• An interaction with a web server is expressed in terms of a URL (plus
an optional data item)

• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

62

Second argument to doit.php

Computer Science 161 Fall 2017 Weaver

HTTP cookies

63

Computer Science 161 Fall 2017 Weaver

Cookies

• A way of maintaining state

64

Browser GET …
 Server

Browser maintains cookie jar

http response contains

Computer Science 161 Fall 2017 Weaver

Setting/deleting cookies by server

• The first time a browser connects to a particular web server,
it has no cookies for that web server

• When the web server responds, it includes a Set-Cookie:
header that defines a cookie

• Each cookie is just a name-value pair
65

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 Server

Computer Science 161 Fall 2017 Weaver

View a cookie

• In a web console (firefox, tool->web developer->web console), type: 
 document.cookie

• to see the cookie(s) for that site

66

Computer Science 161 Fall 2017 Weaver

Well, its not quite a name/value pair...

• Cookies are read by name/value pair

• Presented to the web server or accessed in JavaScript

• But cookies are set by name/value/path

• Both domain-path (foo.com, www.foo.com) and URL path (/pages/)

• Cookies are made available when the paths match

• www.foo.com can read foo.com's cookies...

• But foo.com can't read cookies pathed to www.foo.com

• A couple of other flags:

• secure: Can only be transmitted over an encrypted connection

• HttpOnly: Will be transmitted to the web server but not accessible to JavaScript

67

Computer Science 161 Fall 2017 Weaver

Cookie snooping and stuffing...

• An adversary is on your local wireless network...

• And can therefore see all unencrypted (non-HTTPS) traffic

• They can snoop all unencrypted cookies

• And since that is the state used by the server to identify a returning user... 

they can act as that user

• Firesheep: A utility to snag unencrypted cookies and then use them to

impersonate others

• They can inject code into your browser

• Enables setting (stuffing) cookies

• State can cause problems with the server later on...

• Can force the browser to reveal all non-secure cookies
68

Computer Science 161 Fall 2017 Weaver

scope

Cookie scope

• When the browser connects to the same server later, it includes a
Cookie: header containing the name and value, which the server
can use to connect related requests.

• Domain and path inform the browser about which sites to send
this cookie to

69

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;
 domain = (when to send) ;
 path = (when to send)

 Server

Computer Science 161 Fall 2017 Weaver

HTTP Header:
 Set-cookie: NAME=VALUE ;
 domain = (when to send) ;
 path = (when to send)
 secure = (only send over HTTPS);

Cookie scope

70

GET …
 Server

• Secure: sent over HTTPS only
• HTTPS provides secure communication 

(privacy and integrity)

Computer Science 161 Fall 2017 Weaver

Cookie scope

71

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;
 domain = (when to send) ;
 path = (when to send)
 secure = (only send over SSL);
 expires = (when expires) ;
 HttpOnly

 Server

• Expires is expiration date

• HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

Computer Science 161 Fall 2017 Weaver

Client side read/write: document.cookie

• Setting a cookie in Javascript: 
document.cookie = “name=value; expires=…; ”

• Reading a cookie: alert(document.cookie)
• prints string containing all cookies available for 	document  

(based on [protocol], domain, path)

• Deleting a cookie: write with an expiration date in the past: 
document.cookie = “name=; expires= Thu,
01-Jan-70”

72
document.cookie often used to customize page in Javascript

Computer Science 161 Fall 2017 Weaver

Viewing/deleting cookies in Browser UI

73

Firefox: Tools -> page info -> security -> view cookies

Computer Science 161 Fall 2017 Weaver

Cookie scope

• Scope of cookie might not be the same as the URL-host
name of the web server setting it

• Rules on:

• What scopes a URL-host name is allowed to set

• When a cookie is sent to a URL

74

Computer Science 161 Fall 2017 Weaver

What scope a server may set for a cookie

• domain: any domain-suffix of URL-hostname, except TLD

• Browser has a list of Top Level Domains (e.g. .com, .co.uk)

• example: host = “login.site.com”

• login.site.com can set and read cookies for all of .site.com but not for
another site or TLD

• Mistakenly assumes that subdomains are controlled by the same ownership:

• This doesn't hold for domains like berkeley.edu

• path: can be set to anything
75

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

Computer Science 161 Fall 2017 Weaver

Examples

76Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where it
will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

Computer Science 161 Fall 2017 Weaver

Examples

77Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where it
will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

Computer Science 161 Fall 2017 Weaver

When browser sends cookie

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS if cookie is “secure”]

78

GET //URL-domain/URL-path
Cookie: NAME = VALUE

 Server

Goal: server only sees cookies in its scope

Computer Science 161 Fall 2017 Weaver

• A cookie with

• domain = example.com, and

• path = /some/path/

• will be included on a request to

• http://foo.example.com/some/path/subdirectory/hello.txt

When browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

 Server

79

Computer Science 161 Fall 2017 Weaver

Examples: Which cookie will be sent?

80

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/

http://login.site.com/

http://othersite.com/

cookie: userid=u2

cookie: userid=u1, userid=u2

cookie: none

Computer Science 161 Fall 2017 Weaver

Reflection on a problem...

• The presentation to the server (and to JavaScript) is just
name/value...

• But sent and set based on name/value/domain/path

• And in unspecified order

• And (until recently...), HTTP connections could set cookies
flagged with secure

• Create shadowing opportunities

• Can use to create "land-mine cookies"

• Embed an attack in a cookie when someone is on the same wireless network...

• "Cookies lack integrity, real world implications"

81

