Nick's Personal Self-Defense Decisions...

Putting CS161 in Context: Nick's Self Defense Strategies...

- Weaver
- How and why do I protect myself online and in person...
 - How I decide what to prepare for (and what not to prepare for)
 - Why I've drunk the Apple Kool-Aid™
 - Why I use my credit card everywhere but not a debit card
- And my future nightmares:
 - What do I see as the security problems of tomorrow...

My Personal Threats: The Generic Opportunist

Computer Science 161 Fall 2017

- There are a *lot* of crooks out there
- And they are rather organized...
- But at the same time, these criminals are generally economically rational
 - So *this* is a bear race: I don't need perfect security, I just need *good enough* security
- I use this to determine security/convenience tradeoffs all the time
 - So no password reuse (use a password manager instead)
 - Full disk encryption & passwords on devices: Mitigates the damage from theft
 - Find my iPhone turned on: Increases probability of theft recovery

3

My Personal Threats: The *Lazy* Nation State

- Weaver
- OK, I'm a high *enough* profile to have to worry about the "Advanced Persistent Threats"...
 - Trying for a reasonably high profile on computer policy issues
 - A fair amount of stuff studying the NSA's toys and other nation-state tools
 - But only at the Annoying Pestilent Teenager level: I'm worth some effort but not an extraordinary amount
- So its only *slightly* more advanced than the everyday attackers...
 - With one huge exception: Crossing borders
 - Every nation maintains the right to conduct searches of all electronic contents at a border checkpoint

My Border Crossing Policy: Low Risk Borders

Computer Science 161 Fall 2017

- Not very sensitive borders: Canada, Europe, US, etc...
 - I use full disk encryption with strong passwords on all devices
 - Primary use is to prevent theft from also losing data
 - I have a very robust backup strategy
 - Time machine, archived backups in a safe deposit box, working sets under version control backed up to remote systems...

So, as the plane lands:

- Power off my devices
 - Device encryption is only *robust* when you aren't logged in
- Go through the border
- If my devices get siezed...
 - "Keep it, we'll let the lawyers sort it out"

High Risk Borders

- Middle East or, if, god forbid, I visit China or Russia...
 - Need something that doesn't just resist compromise but can also tolerate compromise
- A "burner" iPhone SE with a Bluetooth keyboard
 - The cheapest secure device available
 - Set it up with *independent* computer accounts for both Google and Apple
 - Temporarily forward my main email to a temporary gmail account
 - All workflow accessible through Google apps on that device
 - Bluetooth keyboard does leak keystrokes, so don't use it for passwords but its safe for everything else
- Not only is this device very hard to compromise...
 - But there is very low value in *successfully compromising it*: The attacker would only gain access to dummy accounts that have no additional privileges
- And bonus, I'm not stuck dragging a computer to the ski slopes in Dubai...
 - Since the other unique threat in those environments is the "Evil maid" attack

My Personal Threats: The Russians... Perhaps

Computer Science 161 Fall 2017

Weaver

Click Trajectories: End-to-End Analysis of the Spam Value Chain

Kirill Levchenko^{*} Andreas Pitsillidis^{*} Neha Chachra^{*} Brandon Enright^{*} Márk Félegyházi[‡] Chris Grier[†] Tristan Halvorson^{*} Chris Kanich^{*} Christian Kreibich[†] He Liu^{*} Damon McCoy^{*} Nicholas Weaver[†] Vern Paxson[†] Geoffrey M. Voelker^{*} Stefan Savage^{*}

• This is the paper that killed the Viagra® Spam business

A \$100M a year set of organized criminal enterprises in Russia...
 And they put the *organized* in organized crime...

I've adopted a *detection and response* strategy:

- The Russians have higher priority targets: The first authors, the last authors, and Brian Krebs
- If anything suspicious happens to Brian, Kirill, or Stefan, then I will start sleeping with a rifle under my bed

The Apple Kool-Aid...

Computer Science 161 Fall 2017

- The iPhone is perhaps the most secure commodity device available...
 - Not only does it receive patches but since the 5S it gained a dedicated cryptographic coprocessor
- The Secure Enclave Processor is the trusted base for the phone
- Even the main operating system isn't fully trusted by the phone!

A dedicated ARM v7 coprocessor

- Small amount of memory, a true RNG, cryptographic engine, etc...
- Important: A collection of *randomly* set fuses
- Should not be able to extract these bits without taking the CPU apart or compromising the Secure Enclave's software
- But bulk of the memory is shared with the main CPU

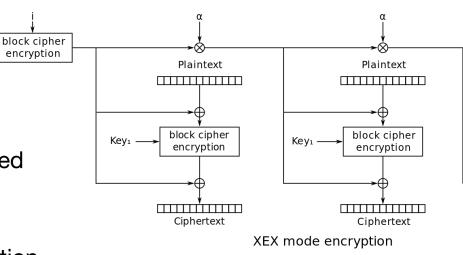
The Roll of the SEP...

Things too important to allow the OS to handle

Computer Science 161 Fall 2017

Weaver

- Key management for the encrypted data store
 - The CPU has to ask for access to data!
- Managing the user's passphrase and related information
- User authentication:
 - **Encrypted** channel to the fingerprint reader/face recognition camera
- Storing credit cards
 - ApplePay is cheap for merchants because it is secure: Designed to have very low probability of fraud!


AES-256-XEX mode

Computer Science 161 Fall 2017

- An confidentality-only mode developed by Phil Rogaway...
 - Designed for encrypting data within a filesystem block i
 - Known plaintext, when encrypted, can't be replaced to produce known output, only "random" output
 - *α* is a galios multiplication and is very quick:
 In practice this enables parallel encryption/decryption
- Used by the SEP to encrypt its own memory...
 - Since it has to share main memory with the main processor
- Opens a limited attack surface from the main processor:

Kev

• Main processor can replace 128b blocks with random corruption

Weave

User Passwords...

- Data is encrypted with the user's password
 - When you power on the phone, most data is completely encrypted
- The master key is PBKDF2(password || on-chip-secret)
 - So you need *both* to generate the master key
 - Some other data has the key as F(on-chip-secret) for stuff that is always available from boot
- The master keys encrypt a block in the flash that holds all the other keys
 - So if the system can erase this block effectively it can erase the phone by erasing just one block of information
- Apple implemented *effaceable storage*:
 - After x failures, OS command, whatever... Overwrite that master block in the flash securely
 - Destroy the keys == erase everything!

Background: FBI v Apple

- A "terrorist" went on a rampage with a rifle in San Bernardino...
 - Killed several people before being killed in a battle with police
- He left behind a work-owned, passcode-locked iPhone 5 in his other car...
- The FBI knew there was no valuable information on this phone
- But never one to refuse a good test case, they tried to compel Apple in court to force Apple to unlock the phone...
- Apple has serious security on the phone
 - Effectively everything is encrypted with PBKDF2(PW||on-chip-secret): >128b of randomly set microscopic fuses
 - Requires that **any** brute force attack either be done on the phone or take apart the CPU
 - Multiple timeouts:
 - 5 incorrect passwords -> starts to slow down
 - 10 incorrect passwords -> optional (opt-in) erase-the-phone

What the FBI wanted...

Computer Science 161 Fall 2017

Weaver

- Apple provides a *modified* version of the operating system which...
 - Removes the timeout on all password attempts
 - Enables password attempts through the USB connection
- Apple cryptographically signs the rogue OS version!
 - A horrific precedent: This is *requiring* that Apple both create a malicious version of the OS and sign it
 - If the FBI could compel Apple to do this, the NSA could too...
 It would make it *impossible* to trust software updates!

Updating the SEP To Prevent This Possibility...

- The SEP will only accept updates signed by Apple
 - But an updated SEP could exfiltrate the secret to enable an offline attack
- The FBI previously asked for this capability against a non-SEP equipped phone
- "Hey Apple, cryptographically sign a corrupted version of the OS so that we can brute-force a password"
- How to prevent the FBI from asking again?
- Now, an OS update (either to the base OS and/or the SEP) requires the user to be logged in and input the password
 - "To rekey the lock, you must first unlock the lock"
 - The FBI can only even *attempt* to ask before they have possession of the phone since once they have the phone they must also have the passcode
 - So when offered the chance to try again with a "Lone Wolf's" iPhone in the Texas church shooting, they haven't bothered

The Limits of the SEP... The host O/S

- The SEP can keep the host OS from accessing things it shouldn't...
 - Credit cards stored for ApplePay, your fingerprint, etc...
- But it can't keep the host OS from things it is supposed to access
 - All the user data when the user is logged in...
- So do have to rely on the host OS as part of my TCB
 - Fortunately it is updated continuously when vulnerabilities are found
 - Apple has responded to the discovery of very targeted zero-days in <30 days
 - And Apple has both good sandboxing of user applications and a history of decent vetting
 - So the random apps are *not* in the Trusted Base.

The SEP and Apple Pay

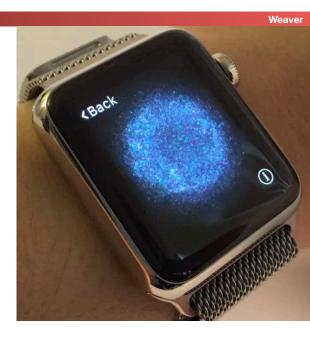
Computer Science 161 Fall 2017

- The SEP is what makes ApplePay possible
 - It handles the authentication to the user with the fingerprint reader/face reader
 - Verifies that it is the user not somebody random
 - It handles the emulation of the credit card
 - A "tokenized" Near Field Communication (NFC) wireless protocol
 - And a tokenized public key protocol for payments through the app

• Very hard to conduct a fraudulent transaction

Designed to enforce user consent at the SEP

Disadvantage: The fingerprint reader is part of the trust domain


• Which means you need special permission from Apple to replace the fingerprint reader when replacing a broken screen

I *love* ApplePay...

- It is a *faster* protocol than the chip-and-signature
 - NFC protocol is designed to do the same operation in less time because the protocol is newer
- It is a more secure protocol than NFC on the credit card
 - Since it actually enforces user-consent
- It is more *privacy sensitive* than standard credit card payments
 - Generates a unique token for each transaction: Merchant is not supposed to link your transactions
- Result is its low cost:
 - Very hard to commit fraud -> less cost to transact
- I use it on my watch all the time
- Useful product idea: Enable enrolling credit cards to enable "tap to open" door locks!

Transitive Trust in the Apple Ecosystem...

- The most trusted item is the iPhone SEP
- Assumed to be rock-solid
- Fingerprint reader allows it to be convenient
- The watch trusts the phone
 - The pairing process includes a cryptographic key exchange mediated by close proximity and the camera
 - So Unlock the phone -> Unlock the watch
- My computer trusts my watch
 - Distance-bounded cryptographic protocol
 - So my watch unlocks my computer
- Result? I don't have to keep retyping my password
 - Allows the use of *strong passwords everywhere* without driving myself crazy!

Credit Card Fraud

- Under US law we have very good protections against fraud
 - Theoretical \$50 limit if we catch it quickly
 - \$0 limit in practice
- So cost of credit card fraud for me is the cost of recovery from fraud
 - Because fraud *will happen*:
 - The mag stripe is all that is needed to duplicate a swipe-card
 - And you can still use swipe-only at gas pumps and other such locations
 - The numbers front and back is all that is needed for card-not-present fraud
 - And how many systems
- What are the recovery costs?
 - Being without the card for a couple of days...
 - Have a second back-up card
 - Having to change all my autopay items...
 - Grrrr....

But What About "Debit" Cards?

- Theoretically the fraud protection is the same...
- But two caveats...
 - It is easier to not pay your credit card company than to claw money back from your bank...
 - Until the situation is resolved:
 - Credit card? It is the credit card company's money that is missing
 - Debit card? It is your money that is missing
- Result is debit card fraud is more transient disruptions...

So Two Different Policies...

Computer Science 161 Fall 2017

- Credit card: Hakunna Matata!
- I use it without reservation, just with a spare in case something happens
- Probably 2-3 compromise events have happened, and its annoying but ah well
- The most interesting was \$1 to Tsunami relief in 2004...
 was a way for the attacker to test that the stolen card was valid
- Debit card: Paranoia-city...
 - It is an ATM-ONLY card (no Visa/Mastercard logo!)
 - It is used ONLY in ATMs belonging to my bank
 - Reduce the risk of "skimmers": rogue ATMs

21

Nick's Nightmare: Slaughterbots™

Computer Science 161 Fall 2017

- Take a toy drone chassis design
 - <\$40 retail price!</p>
- Add two cameras...
 - Enables stereo vision for navigation & targeting
- Add a Zynq FPGA and a single RAM chip
 - Gives a dual-core ARM CPU, a significant amount of FPGA resources, and 1 GB RAM
- Add a miniature EFP (Explosively Formed Penetrator/ Explosively Formed Projectile)
 - Explodes and turns a metal disk into effectively a bullet without the need for a barrel
 - Or could just do an electronically-fired derringer design with an integrated bullet/barrel

.....

Back of the Envelope Design Costs...

- \$10M R&D budget
 - Develops mini-EFP, circuit board, and autonomous software
- \$200/each production cost
- Cost over toy drone: EFP, control board w FPGA & memory, swap Lithium Ion (rechargeable) battery with standard Lithium battery (more energy density)
- Also \$500-1000 "carrier drones"
 - Fixed-wing mother-drone for longer-range delivery: single larger motor, two servos, same computer with the addition of a GPS
 - Fly to specified location, drop the Slaughterbots...

So the HARD challenge: How to **stop** these things in a city!

Computer Science 161 Fall 2017

Weaver

- Can't just blast away with bullets or lasers...
 - After all, what happens when you miss?
- Can't use some super sekret military technology
 - You can't put classified stuff all over the place
- Can't use something super expensive...
 - We need to cover a lot of territory cheaply
- So it is an interesting hard problem to think about...