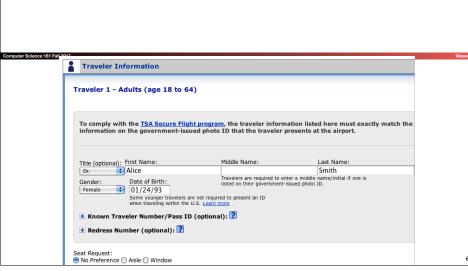

mouter Science 161 Fall 20

Overflows, Injection, & Memory Safety

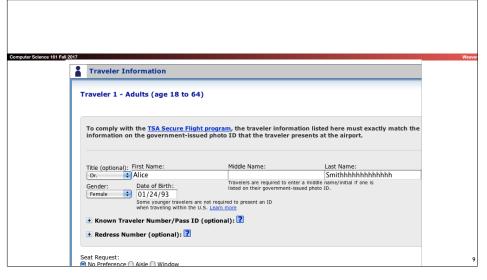
Internet of Shit...

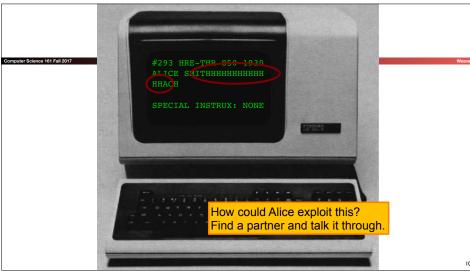
omputer Science 161 Fall 2017

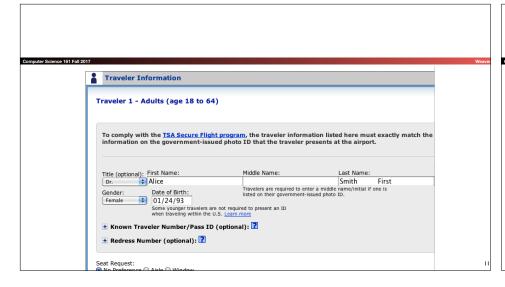

- · A device produced by the lowest bidder...
- That you then connect through the network
- This has a very wide attack surface
- Methods where an attacker might access a vulnerability
- And its often incredibly cost sensitive
- · Very little support after purchase
- · So things don't get patched
- No way for the user to tell what is "secure" or "not"
- But they can tell what is cheaper!
- And often it is insanely insecure:
 Default passwords on telnet of admin/admin...
 Trivial buffer overflows

Net Of A Million Spies...

Computer Science 161 Fall 201


- · Device only communicates through a central service
- · Greatly reduces the attack surface but...
- Most of the companies running the service are "Data Asset" companies
 - · Make their money from advertising, not the product themselves
 - · May actually subsidize the product considerably
- Some you know about: Google, Amazon
- Some you may not: Salesforce
- Only exception of note is Apple:
- I'll talk about HomeKit later...
 But you still have to trust that the HomeKit product doesn't report to a third party.






```
char name[20];
void vulnerable() {
    ...
    gets(name);
    ...
}
```

```
char name[20];
char instrux[80] = "none";

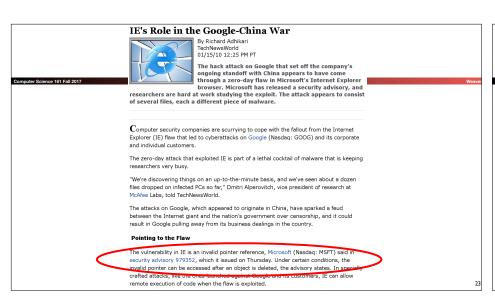
void vulnerable() {
    ...
    gets(name);
    ...
}
```

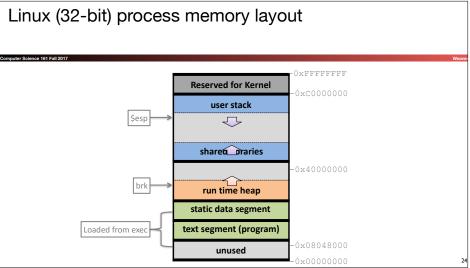
```
char name[20];
int seatinfirstclass = 0;

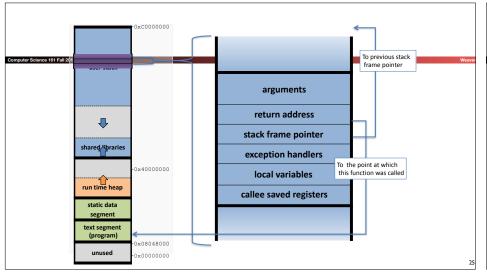
void vulnerable() {
    ...
    gets(name);
    ...
}
```

```
char name[20];
int authenticated = 0;

void vulnerable() {
    ...
    gets(name);
    ...
}
```


```
char name[20];
int (*fnptr)();


void vulnerable() {
    ...
    gets(name);
    ...
}
```


	Rank	Score	ID	Name
	[1]	93.8	CWE-89	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
161 Fall	[2]	83.3		Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
	[3]	79.0	CWE-120	Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
	[4]	77.7	<u>CWE-79</u>	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
	[5]	76.9	CWE-306	Missing Authentication for Critical Function
	[6]	76.8	CWE-862	Missing Authorization
	[7]	75.0	CWE-798	Use of Hard-coded Credentials
	[8]	75.0	CWE-311	Missing Encryption of Sensitive Data
	[9]	74.0	CWE-434	Unrestricted Upload of File with Dangerous Type
	[10]	73.8	CWE-807	Reliance on Untrusted Inputs in a Security Decision
	[11]	73.1	CWE-250	Execution with Unnecessary Privileges
	[12]	70.1	CWE-352	Cross-Site Request Forgery (CSRF)
	[13]	69.3		Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
	[14]	68.5	CWE-494	Download of Code Without Integrity Check
	[15]	67.8	CWE-863	Incorrect Authorization
	[16]	66.0	CWE-829	Inclusion of Functionality from Untrusted Control Sphere

```
void vulnerable() {
   char buf[64];
   ...
   gets(buf);
   ...
}
```

```
void still_vulnerable?() {
   char *buf = malloc(64);
   ...
   gets(buf);
   ...
}
```



```
A Normal Function Call in x86

Computer Science 101 Fall 2017

• See Other Slides...
```

```
void safe() {
  char buf[64];
  ...
  fgets(buf, 64, stdin);
  ...
}
```

```
void safer() {
  char buf[64];
  ...
  fgets(buf,sizeof(buf),stdin);
  ...
}
```

```
Assume these are both under
                 the control of an attacker.
void vulnerable(int len, char *data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
 memcpy(void *s1, const void *s2, size t)n);
                         size t is unsigned:
                         What happens if len == -1?
```

```
void safe(size_t len, char *data) {
 char buf[64];
 if (len > 64)
   return;
 memcpy(buf, data, len);
```

```
void f(size_t len, char *data) {
 char *buf = malloc(len+2);
 if (buf == NULL) return;
 memcpy(buf, data, len);
 buf[len] = '\n';
 buf[len+1] = '\0';
```

Is it safe? Talk to your partner.

Vulnerable! If len = 0xfffffffff, allocates only 1 byte

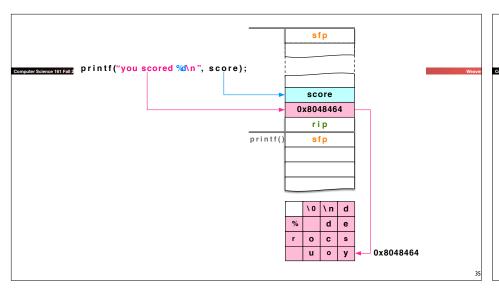
Broward Vote-Counting Blunder Changes Amendment Result

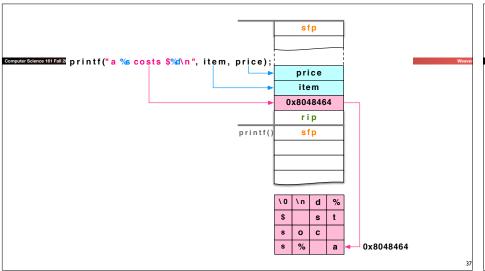
puter Science 161 Fall POSTED: 1:34 pm EST November 4, 2004

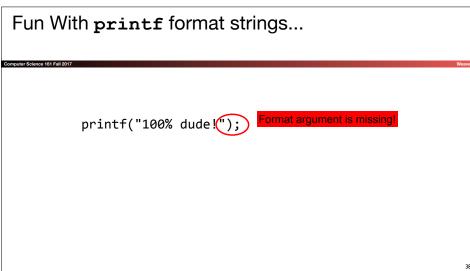
BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

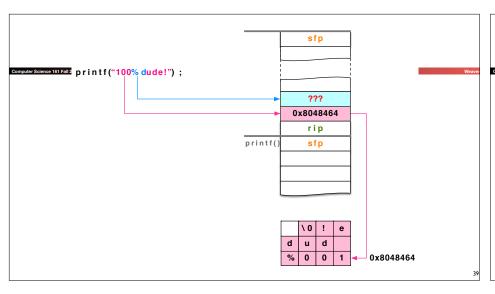
Amendment 4, which would allow Miami-Dade and Broward counties to hold a future election to decide if slot machines should be allowed at racetracks, was thought to be tied. But now that a computer glitch for machines counting absentee ballots has been exposed, it turns out the amendment passed.

The software is not geared to count more than 32,000 votes in a precinct. So what happens when it gets to 32,000 is the software starts ounting backward," said Broward County Mayor Ilene Lieberman


That means that Amendment 4 passed in Broward County by more than 240,000 votes rather than the 166,000-vote margin reported Wednesday night. That increase changes the overall statewide results in what had been a neck-and-neck race, one for which recounts had been going on today. But with news of Broward's error, it's clear amendment 4 passed.


Broward County Mayor Ilene Lieberman says voting counting error is an "embarrassing mistake."


```
void vulnerable() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf(buf);
}
```


```
printf("you scored %d\n", score);
```


printf("a %s costs \$%d\n", item, price);

Fun With printf format strings...

```
printf("100% dude!");

⇒ prints value 4 bytes above retaddr as integer

printf("100% sir!");

⇒ prints bytes pointed to by that stack entry

up through first NUL

printf("%d %d %d %d ...");

⇒ prints series of stack entries as integers

printf("%d %s");

⇒ prints value 4 bytes above retaddr plus bytes

pointed to by preceding stack entry

printf("100% nuke'm!");

⇒ writes the value 3 to the address pointed to by stack entry
```

omputer Science 161 Fall 201

```
void safe() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf("%s", buf);
}
```

And Now:

Lets Walk Through A Stack Overflow

omputer Science 161 Fa

- Idea: We override a buffer on the stack...
- · In the buffer we place some code of our choosing
- "Shellcode"
- · Override the return address to point to code of our choosing
- Lets step through the process on an x86...

43