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Cryptography: 
Concepts  

& Confidentiality
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Cryptography is nightmare magic 
math that cares what kind of pen 
you use -@swiftonsecurity
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Cryptography: 
Philosophy...
• This part of the class is really don't try this at home

• It is incredibly easy to screw this stuff up


• It isn't just a matter of making encryption algorithms...

• Unless your name is David Wagner or Ralcua Popa, your crypto is broken!


• It isn't just a matter of coding good algorithms...

• Although just writing 100% correct code normally is hard enough!


• There is all sorts of deep voodoo that, 
when you screw up your security breaks

• EG, bad random number generators, side channel  

attacks, reusing one-use-only items, replay attacks,  
downgrade attacks, you name it...
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Three main goals

• Confidentiality: preventing adversaries from reading our 
private data


• Data = message or document 


• Integrity: preventing attackers from altering our data

• Data itself might or might not be private


• Authentication: proving who created a given message or 
document


• Generally implies/requires integrity
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Special guests

• Alice                (sender of messages) 


• Bob                  (receiver of messages)


• The attackers

• Eve: “eavesdropper”

• Mallory: “manipulator”
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Mi: ith message 
of plaintext

Alice Bob

Eve

E(Mi,	K)
Ci: ith message 
of ciphertext D(Ci,	K)

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are 
inverses for the same K

“Symmetric key encryption”

Confidentiality



Computer Science 161 Fall 2017 Weaver

The Ideal Contest

• Attacker’s goal: any knowledge of Mi beyond an upper 
bound on its length


• Slightly better than 50% probability at guessing a single bit: attacker wins!

• Any notion of how Mi relates to Mj: attacker wins!


• Defender’s goal: ensure attacker has no reason to think any 
M' ∈ {0,1}n is more likely than any other


• (for Mi of length n)
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Eve’s Capabilities/Foreknowledge

• No knowledge of K

• We assume K is selected by a truly random process

• For b-bit key, any K ∈ {0,1}b is equally likely


• Recognition of success: Eve can generally tell if she has 
correctly and fully recovered Mi


• But: Eve cannot recognize anything about partial solutions, such as whether 
she has correctly identified a particular bit in Mi


• There are some attacks where Eve can guess and verify

• Does not apply to scenarios where Eve exhaustively examines every possible 

Mi' ∈ {0,1}n 
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Eve’s Available Information

1.Ciphertext-only attack:

• Eve gets to see every instance of Ci

• Variant: Eve may also have partial information about Mi

• “It’s probably English text”

• Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell”


2.Known plaintext:

• Eve knows part of Mi and/or entire other Mjs

• How could this happen?

• Encrypted HTTP request: starts with “GET” 

• Eve sees earlier message she knows Alice will send to Bob

• Alice transmits in the clear and then resends encrypted

• Alex the Nazi always transmits the weather report at the 

same time of day, with the word "Wetter" in a known position
9



Computer Science 161 Fall 2017 Weaver

Eve’s Available Information, con’t

3.Chosen plaintext

• Eve gets Alice to send Mj’s of Eve’s choosing

• How can this happen?

• E.g. Eve sends Alice an email spoofed from Alice’s boss saying “Please securely forward this to Bob”

• E.g. Eve has some JavaScript running in Alice's web browser that is contacting Bob's TLS web server


4.Chosen ciphertext:

• Eve tricks Bob into decrypting some Cj' of her  

choice and he reveals something about the result

• How could this happen?

• E.g. repeatedly send ciphertext to a web server that will  

send back different-sized messages depending on whether  
ciphertext decrypts into something well-formatted


• Or: measure how long it takes Bob to decrypt & validate
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Eve’s Available Information, con’t

5.Combinations of the above

• Ideally, we’d like to defend against this last, the most 

powerful attacker

• And: we can!, so we’ll mainly focus on this attacker when 

discussing different considerations
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Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k


• She can provide two separate chosen plaintexts of the 
same length


• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat...


• Goal of Eve is to have a better than random chance of 
guessing which plaintext the oracle selected


• Variations involve the Oracle always selecting either the first or the second
12
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Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around) 
through the alphabet


• E.g., Mi = “DOG”, K = 3 
  Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
  D(Ci,K) = ROT-3(“GRJ”) = “DOG”


• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
13
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? 
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2


• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24
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Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker 
knows all internal details


• Don’t rely on security-by-obscurity


• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...
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Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character.  Then start 

over with K1, ...

• K = { K1, K2, ..., Kn }


• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work


• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine


• Can go further with “chaining”, e.g., 2nd rotation depends on K2 and first 
character of ciphertext

• We just described 2,000 years of cryptography
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And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with 

each rotor permuting the alphabet and every keypress 
incrementing the settings


• Key was the selection of rotors, initial settings, and a 
permutation plugboard


• The British built a system (the "Bombe") to 
brute-force Enigma

• Required a known-plaintext (a "crib") to verify 

decryption: e.g. the weather report

• Sometimes the brits would deliberately "seed" a naval 

minefield for a chosen-plaintext attack
20
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One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker


• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K   (⊕ = XOR) 

21

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X    
X ⊕ X = 0     

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z
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One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker


• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K   (⊕ = XOR) 

D(C,K) = C ⊕ K 
  = M ⊕ K ⊕ K =  M ⊕ 0 =  M

22

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X    
X ⊕ X = 0     

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z
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One-Time Pad: Provably Secure!

• Let’s assume Eve has partial information about M

• We want to show: from C, she does not gain any further 

information

• Formalization: supposed Alice sends either M' or M''

• Eve doesn’t know which; tries to guess based on C


• Proof:

• For random, independent K, all possible bit-patterns for C are equally likely

• This holds regardless of whether Alice chose M' or M'', or even if Eve provides M' and 

M'' to Alice and Alice selects which one (IND-CPA)

• Thus, observing a given C does not help Eve narrow down the possibilities in any way:
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One-Time Pad: Provably Impractical!

• Problem #1: key generation

• Need truly random, independent keys


• Problem #2: key distribution

• Need to share keys as long as all 

possible communication

• If we have a secure way to establish 

such keys, just use that for  
communication in the first place!


• Only advantage is you can communicate the 
key in advance: you may have the secure 
channel now but won't have it later

24
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Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K) 
• Eve observes M ⊕ K and M' ⊕ K

• Can she learn anything about M and/or M' ?


• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	

25
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Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K) 
• Eve observes M ⊕ K and M' ⊕ K 
• Can she learn anything about M and/or M' ?


• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	= (M ⊕ M') ⊕ (K ⊕ K) 
	= (M ⊕ M') ⊕ 0 
	= M ⊕ M' 

• Now she knows which bits in M match bits in M'

• And if Eve already knew M, now she knows M'!

• Even if not, Eve can guess M and ensure that M' is consistent
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VENONA: 
Pad Reuse in the Real World
• The Soviets used one-time pads for  

communication from their spies in the US

• After all, it is provably secure!


• During WWII, the Soviets started reusing 
key material

• Uncertain whether it was just the cost of generating pads or what...


• VENONA was a US cryptanalysis project designed to  
break these messages

• Included confirming/identifying the spies targeting the  

US Manhattan project

• Project continued until 1980!


• Not declassified until 1995! 
• So secret even President Truman wasn't informed about it.

• But the Soviets found out about it in 1949, but their one-time  

pad reuse was fixed after 1948 anyway
27
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Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k 

bits), we get: 

• EK : {0,1}b → {0,1}b   denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)


• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible


• Efficiency: computable in 𝜇sec’s

• Security:

• For unknown K, “behaves” like a random permutation


• Provides a building block for more extensive encryption
28
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DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits


• Made brute-forcing feasible for attacker with massive (for the time) computational resources


• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later


• However, modern computer speeds make it completely unsafe due 
to small key size
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Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• 20 years old, standardized 15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”


• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class


• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

31
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039


• Say we build massive hardware that can try 109 (1 billion) keys in 1 
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec


•  How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years
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What about a 256b key in a year?

• Time to start thinking in 
astronomical numbers:


• If each brute force device is 1mm3...

• We will need 1052 of these things...


• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Brute force is not a factor 

against modern block ciphers... 
IF the key is actually random!
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Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (details omitted)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!


• If same data is encrypted twice, attacker knows it is the 
same


• Solution: incorporate a varying, known quantity (IV = “initialization vector”)
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Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the 

other blocks 
	Ci = E(Pi, K)


• Since key K is fixed, each block is subject to the same 
permutation


• (As though we had a “code book” to map each possible input value to its 
designated output)
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P1 P2 P3

C1 C2 C3

ECB Encryption
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P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s
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IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block


• This has catastrophic implications in the real world...

38
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with ECB and interpreting ciphertext directly as RGB
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Later (identical) message again encrypted with ECB
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Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to mask 
relationships between blocks.  Done carefully, either of these 
works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information


• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between 

messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value:  Easiest way to get one is generate it randomly


• Example: Cipher Block Chaining (CBC)
42
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P1 P2 P3

C1 C2 C3

E(Plaintext, K):   
• If b is the block size of the block cipher, split the plaintext 

in blocks of size b: P1, P2, P3,.. 
• Choose a random IV (do not reuse for other messages) 
• Now compute: 

• Final ciphertext is (IV, C1, C2, C3).  This is what Eve sees.

CBC Encryption
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P1 P2 P3

C1 C2 C3

D(Ciphertext, K):   
• Take IV out of the ciphertext 
• If b is the block size of the block cipher, split the ciphertext 

in blocks of size b: C1, C2, C3, … 
• Now compute this: 

• Output the plaintext as the concatenation of P1, P2, P3, ...

CBC Decryption
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with CBC
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CBC Mode...

• Widely used

• Issue: sequential encryption, can't parallelize encryption

• Must finish encrypting block b before starting b+1

• But you can parallelize decryption 

• Parallelizable alternative: CTR (Counter) mode

• Security: If no reuse of nonce, both are provably secure 

(IND-CPA) assuming the underlying block cipher is secure
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(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce/IV does not 
repeat across different encryptions. 

Choose at random! 

CTR Mode Encryption
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Note, CTR decryption uses block 
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

Counter Mode Decryption
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Thoughts on CTR mode...

• CTR mode is actually a stream cipher (more on those later):

• You no longer need to worry about padding which is nice


• CTR mode is fully parallelizeable for encryption as well as 
decryption
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NEVER EVER EVER use CTR Mode!

• What happens if you reuse the IV in CBC...

• Its bad but not catastrophic: 

you fail IND-CPA but the damage may be tolerable:

• M = {A,A,B} 

M' = {A,B,B} 
Adversary can see that the first part of M and M' are the same, but not the later part


• What happens if you reuse the IV in CTR mode?

• It is exactly like reusing a one-time pad!


• An example of a system which fails badly...

• CTR mode is theoretically as secure as CBC when 

used properly...

• But when it is misused it fails catastrophically: 

Personal bias:  I believe we need systems that are still  
robust when implemented incorrectly
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What To Use Then?

• What if you want a cipher mode where you don't need to 
pad (like CTR mode)?


• But you want the robust to screwup properties of CBC mode?


• Idea: lets do it CTR-like (xor plaintext with block cipher 
output), but...


• Instead of the next block input being an incremented 
counter... 
have the next block be the previous ciphertext


• Still lacks integrity however, we'll fix that next time...
52
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CFB Encryption

53
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CFB Decryption
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CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode


• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA


• But a bit worse if you reuse the IV
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