
Computer Science 161 Fall 2017 Weaver

Cryptography: 
Concepts  

& Confidentiality

1

Computer Science 161 Fall 2017 Weaver

2

Cryptography is nightmare magic
math that cares what kind of pen
you use -@swiftonsecurity

Computer Science 161 Fall 2017 Weaver

Cryptography: 
Philosophy...
• This part of the class is really don't try this at home

• It is incredibly easy to screw this stuff up

• It isn't just a matter of making encryption algorithms...

• Unless your name is David Wagner or Ralcua Popa, your crypto is broken!

• It isn't just a matter of coding good algorithms...

• Although just writing 100% correct code normally is hard enough!

• There is all sorts of deep voodoo that, 
when you screw up your security breaks

• EG, bad random number generators, side channel  

attacks, reusing one-use-only items, replay attacks,  
downgrade attacks, you name it...

3

Computer Science 161 Fall 2017 Weaver

Three main goals

• Confidentiality: preventing adversaries from reading our
private data

• Data = message or document

• Integrity: preventing attackers from altering our data

• Data itself might or might not be private

• Authentication: proving who created a given message or
document

• Generally implies/requires integrity

4

Computer Science 161 Fall 2017 Weaver

Special guests

• Alice (sender of messages)

• Bob (receiver of messages)

• The attackers

• Eve: “eavesdropper”

• Mallory: “manipulator”

5

Eve

Computer Science 161 Fall 2017 Weaver

6

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi,	K)
Ci: ith message
of ciphertext D(Ci,	K)

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are
inverses for the same K

“Symmetric key encryption”

Confidentiality

Computer Science 161 Fall 2017 Weaver

The Ideal Contest

• Attacker’s goal: any knowledge of Mi beyond an upper
bound on its length

• Slightly better than 50% probability at guessing a single bit: attacker wins!

• Any notion of how Mi relates to Mj: attacker wins!

• Defender’s goal: ensure attacker has no reason to think any
M' ∈ {0,1}n is more likely than any other

• (for Mi of length n)

7

Computer Science 161 Fall 2017 Weaver

Eve’s Capabilities/Foreknowledge

• No knowledge of K

• We assume K is selected by a truly random process

• For b-bit key, any K ∈ {0,1}b is equally likely

• Recognition of success: Eve can generally tell if she has
correctly and fully recovered Mi

• But: Eve cannot recognize anything about partial solutions, such as whether
she has correctly identified a particular bit in Mi

• There are some attacks where Eve can guess and verify

• Does not apply to scenarios where Eve exhaustively examines every possible

Mi' ∈ {0,1}n
8

Computer Science 161 Fall 2017 Weaver

Eve’s Available Information

1.Ciphertext-only attack:

• Eve gets to see every instance of Ci

• Variant: Eve may also have partial information about Mi

• “It’s probably English text”

• Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell”

2.Known plaintext:

• Eve knows part of Mi and/or entire other Mjs

• How could this happen?

• Encrypted HTTP request: starts with “GET”

• Eve sees earlier message she knows Alice will send to Bob

• Alice transmits in the clear and then resends encrypted

• Alex the Nazi always transmits the weather report at the 

same time of day, with the word "Wetter" in a known position
9

Computer Science 161 Fall 2017 Weaver

Eve’s Available Information, con’t

3.Chosen plaintext

• Eve gets Alice to send Mj’s of Eve’s choosing

• How can this happen?

• E.g. Eve sends Alice an email spoofed from Alice’s boss saying “Please securely forward this to Bob”

• E.g. Eve has some JavaScript running in Alice's web browser that is contacting Bob's TLS web server

4.Chosen ciphertext:

• Eve tricks Bob into decrypting some Cj' of her  

choice and he reveals something about the result

• How could this happen?

• E.g. repeatedly send ciphertext to a web server that will  

send back different-sized messages depending on whether  
ciphertext decrypts into something well-formatted

• Or: measure how long it takes Bob to decrypt & validate
10

Computer Science 161 Fall 2017 Weaver

Eve’s Available Information, con’t

5.Combinations of the above

• Ideally, we’d like to defend against this last, the most

powerful attacker

• And: we can!, so we’ll mainly focus on this attacker when

discussing different considerations

11

Computer Science 161 Fall 2017 Weaver

Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k

• She can provide two separate chosen plaintexts of the
same length

• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat...

• Goal of Eve is to have a better than random chance of
guessing which plaintext the oracle selected

• Variations involve the Oracle always selecting either the first or the second
12

Computer Science 161 Fall 2017 Weaver

Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around)
through the alphabet

• E.g., Mi = “DOG”, K = 3 
 Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
 D(Ci,K) = ROT-3(“GRJ”) = “DOG”

• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
13

Computer Science 161 Fall 2017 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

14

Computer Science 161 Fall 2017 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =?

15

Computer Science 161 Fall 2017 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”

16

Computer Science 161 Fall 2017 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2

• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24
17

Computer Science 161 Fall 2017 Weaver

Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker
knows all internal details

• Don’t rely on security-by-obscurity

• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...

18

Computer Science 161 Fall 2017 Weaver

Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character. Then start

over with K1, ...

• K = { K1, K2, ..., Kn }

• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work

• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine

• Can go further with “chaining”, e.g., 2nd rotation depends on K2 and first
character of ciphertext

• We just described 2,000 years of cryptography

19

Computer Science 161 Fall 2017 Weaver

And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with

each rotor permuting the alphabet and every keypress
incrementing the settings

• Key was the selection of rotors, initial settings, and a
permutation plugboard

• The British built a system (the "Bombe") to
brute-force Enigma

• Required a known-plaintext (a "crib") to verify

decryption: e.g. the weather report

• Sometimes the brits would deliberately "seed" a naval

minefield for a chosen-plaintext attack
20

Computer Science 161 Fall 2017 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker

• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K (⊕ = XOR) 

21

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X
X ⊕ X = 0

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

Computer Science 161 Fall 2017 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker

• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K (⊕ = XOR) 

D(C,K) = C ⊕ K 
 = M ⊕ K ⊕ K = M ⊕ 0 = M

22

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X
X ⊕ X = 0

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

Computer Science 161 Fall 2017 Weaver

One-Time Pad: Provably Secure!

• Let’s assume Eve has partial information about M

• We want to show: from C, she does not gain any further

information

• Formalization: supposed Alice sends either M' or M''

• Eve doesn’t know which; tries to guess based on C

• Proof:

• For random, independent K, all possible bit-patterns for C are equally likely

• This holds regardless of whether Alice chose M' or M'', or even if Eve provides M' and

M'' to Alice and Alice selects which one (IND-CPA)

• Thus, observing a given C does not help Eve narrow down the possibilities in any way:

23

Computer Science 161 Fall 2017 Weaver

One-Time Pad: Provably Impractical!

• Problem #1: key generation

• Need truly random, independent keys

• Problem #2: key distribution

• Need to share keys as long as all 

possible communication

• If we have a secure way to establish 

such keys, just use that for  
communication in the first place!

• Only advantage is you can communicate the 
key in advance: you may have the secure 
channel now but won't have it later

24

Computer Science 161 Fall 2017 Weaver

Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K)
• Eve observes M ⊕ K and M' ⊕ K

• Can she learn anything about M and/or M' ?

• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	

25

Computer Science 161 Fall 2017 Weaver

Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K)
• Eve observes M ⊕ K and M' ⊕ K
• Can she learn anything about M and/or M' ?

• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	= (M ⊕ M') ⊕ (K ⊕ K) 
	= (M ⊕ M') ⊕ 0 
	= M ⊕ M'

• Now she knows which bits in M match bits in M'

• And if Eve already knew M, now she knows M'!

• Even if not, Eve can guess M and ensure that M' is consistent

26

Computer Science 161 Fall 2017 Weaver

VENONA: 
Pad Reuse in the Real World
• The Soviets used one-time pads for  

communication from their spies in the US

• After all, it is provably secure!

• During WWII, the Soviets started reusing 
key material

• Uncertain whether it was just the cost of generating pads or what...

• VENONA was a US cryptanalysis project designed to  
break these messages

• Included confirming/identifying the spies targeting the  

US Manhattan project

• Project continued until 1980!

• Not declassified until 1995!
• So secret even President Truman wasn't informed about it.

• But the Soviets found out about it in 1949, but their one-time  

pad reuse was fixed after 1948 anyway
27

Computer Science 161 Fall 2017 Weaver

Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k

bits), we get:

• EK : {0,1}b → {0,1}b denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)

• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible

• Efficiency: computable in 𝜇sec’s

• Security:

• For unknown K, “behaves” like a random permutation

• Provides a building block for more extensive encryption
28

Computer Science 161 Fall 2017 Weaver

DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits

• Made brute-forcing feasible for attacker with massive (for the time) computational resources

• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later

• However, modern computer speeds make it completely unsafe due
to small key size

29

Computer Science 161 Fall 2017 Weaver

Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• 20 years old, standardized 15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”

• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class

• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher

30

Computer Science 161 Fall 2017 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

31

Computer Science 161 Fall 2017 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

• Say we build massive hardware that can try 109 (1 billion) keys in 1
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec

• How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years

32

Computer Science 161 Fall 2017 Weaver

What about a 256b key in a year?

• Time to start thinking in
astronomical numbers:

• If each brute force device is 1mm3...

• We will need 1052 of these things...

• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Brute force is not a factor

against modern block ciphers... 
IF the key is actually random!

33

Computer Science 161 Fall 2017 Weaver

Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (details omitted)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!

• If same data is encrypted twice, attacker knows it is the
same

• Solution: incorporate a varying, known quantity (IV = “initialization vector”)

34

Computer Science 161 Fall 2017 Weaver

Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the

other blocks 
	Ci = E(Pi, K)

• Since key K is fixed, each block is subject to the same
permutation

• (As though we had a “code book” to map each possible input value to its
designated output)

35

Computer Science 161 Fall 2017 Weaver

36

P1 P2 P3

C1 C2 C3

ECB Encryption

Computer Science 161 Fall 2017 Weaver

37

P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s

Computer Science 161 Fall 2017 Weaver

IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block

• This has catastrophic implications in the real world...

38

Computer Science 161 Fall 2017 Weaver

39

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2017 Weaver

40

Encrypted with ECB and interpreting ciphertext directly as RGB

Computer Science 161 Fall 2017 Weaver

41

Later (identical) message again encrypted with ECB

Computer Science 161 Fall 2017 Weaver

Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to mask
relationships between blocks. Done carefully, either of these
works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information

• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between

messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value: Easiest way to get one is generate it randomly

• Example: Cipher Block Chaining (CBC)
42

Computer Science 161 Fall 2017 Weaver

43

P1 P2 P3

C1 C2 C3

E(Plaintext, K):
• If b is the block size of the block cipher, split the plaintext

in blocks of size b: P1, P2, P3,..
• Choose a random IV (do not reuse for other messages)
• Now compute:

• Final ciphertext is (IV, C1, C2, C3). This is what Eve sees.

CBC Encryption

Computer Science 161 Fall 2017 Weaver

44

P1 P2 P3

C1 C2 C3

D(Ciphertext, K):
• Take IV out of the ciphertext
• If b is the block size of the block cipher, split the ciphertext

in blocks of size b: C1, C2, C3, …
• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...

CBC Decryption

Computer Science 161 Fall 2017 Weaver

45

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2017 Weaver

46

Encrypted with CBC

Computer Science 161 Fall 2017 Weaver

CBC Mode...

• Widely used

• Issue: sequential encryption, can't parallelize encryption

• Must finish encrypting block b before starting b+1

• But you can parallelize decryption

• Parallelizable alternative: CTR (Counter) mode

• Security: If no reuse of nonce, both are provably secure 

(IND-CPA) assuming the underlying block cipher is secure

47

Computer Science 161 Fall 2017 Weaver

48

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce/IV does not
repeat across different encryptions.

Choose at random!

CTR Mode Encryption

Computer Science 161 Fall 2017 Weaver

49

Note, CTR decryption uses block
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

Counter Mode Decryption

Computer Science 161 Fall 2017 Weaver

Thoughts on CTR mode...

• CTR mode is actually a stream cipher (more on those later):

• You no longer need to worry about padding which is nice

• CTR mode is fully parallelizeable for encryption as well as
decryption

50

Computer Science 161 Fall 2017 Weaver

NEVER EVER EVER use CTR Mode!

• What happens if you reuse the IV in CBC...

• Its bad but not catastrophic: 

you fail IND-CPA but the damage may be tolerable:

• M = {A,A,B} 

M' = {A,B,B} 
Adversary can see that the first part of M and M' are the same, but not the later part

• What happens if you reuse the IV in CTR mode?

• It is exactly like reusing a one-time pad!

• An example of a system which fails badly...

• CTR mode is theoretically as secure as CBC when 

used properly...

• But when it is misused it fails catastrophically: 

Personal bias: I believe we need systems that are still  
robust when implemented incorrectly

51

Computer Science 161 Fall 2017 Weaver

What To Use Then?

• What if you want a cipher mode where you don't need to
pad (like CTR mode)?

• But you want the robust to screwup properties of CBC mode?

• Idea: lets do it CTR-like (xor plaintext with block cipher
output), but...

• Instead of the next block input being an incremented
counter... 
have the next block be the previous ciphertext

• Still lacks integrity however, we'll fix that next time...
52

Computer Science 161 Fall 2017 Weaver

CFB Encryption

53

Computer Science 161 Fall 2017 Weaver

CFB Decryption

54

Computer Science 161 Fall 2017 Weaver

CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode

• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA

• But a bit worse if you reuse the IV

55

