
Computer Science 161 Fall 2017 Weaver

Key (mis)Management
Applied  
Crypto 

and Crapto

1

Computer Science 161 Fall 2017 Weaver

RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is

• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman

problem

2

Computer Science 161 Fall 2017 Weaver

El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared

• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key

• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob

• Maps message m to create m', calculates c2 = m' * s mod p

• Bob then sends {c1, c2}
3

Computer Science 161 Fall 2017 Weaver

El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p
• Then Alice calculates the inverse of the mapping to get m

• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2 = m1' * s mod p 

c2' = m2' * s mod p
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2'
• So if you know m1...

4

Computer Science 161 Fall 2017 Weaver

DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters

• Alice creates her own random private key x < q

• Public key y = gx mod p

5

Computer Science 161 Fall 2017 Weaver

Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q
• If r = 0, start again

• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again

• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)

• Verification

• w = s-1 mod q
• u1 = H(m) * w mod q
• u2 = r * w mod q
• v = (gu1yu2 mod p) mod q
• Validate that v = r

6

Computer Science 161 Fall 2017 Weaver

But Easy To Screw Up...

• k is not just a nonce... It must be random and secret

• If you know k, you can calculate x

• And even if you just reuse a random k... 
for two signatures sa and sb

• A bit of algebra proves that k = (HA – HB) / (sa – sb)

• A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/

7

Computer Science 161 Fall 2017 Weaver

And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems

(Linux) that they then removed

• Of course this was catnip to reverse
engineers

• Best way to get people interested: 

remove Linux from a device...

• It turns for out one of the key authentication
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!

8

Computer Science 161 Fall 2017 Weaver

And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the same

value multiple times

• Multiple Bitcoin wallet apps on Android were
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA

• Message is broadcast publicly for all to see

• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k

• So of course someone scanned for all such  
Bitcoin transactions

9

Computer Science 161 Fall 2017 Weaver

How Can We Communicate With Someone New?

• Public-key crypto gives us amazing capabilities to achieve
confidentiality, integrity & authentication without shared
secrets …

• But how do we solve MITM attacks?

• How can we trust we have the true public key for someone

we want to communicate with?

• Ideas?
10

Computer Science 161 Fall 2017 Weaver

Trusted Authorities

• Suppose there’s a party that everyone agrees to trust to
confirm each individual’s public key

• Say the Governor of California

• Issues with this approach?

• How can everyone agree to trust them?

• Scaling: huge amount of work; single point of failure …

• ... and thus Denial-of-Service concerns

• How do you know you’re talking to the right authority??

11

Computer Science 161 Fall 2017 Weaver

Trust Anchors

• Suppose the trusted party distributes their key so everyone
has it …

12

Computer Science 161 Fall 2017 Weaver

13

Computer Science 161 Fall 2017 Weaver

14

Computer Science 161 Fall 2017 Weaver

15

Jerry Brown’s Public Key is
0x6a128b3d3dc67edc74d690b19e072f64.

Computer Science 161 Fall 2017 Weaver

Trust Anchors

• Suppose the trusted party distributes their key so everyone
has it …

• We can then use this to bootstrap trust

• As long as we have confidence in the decisions that that party makes

16

Computer Science 161 Fall 2017 Weaver

Digital Certificates

• Certificate (“cert”) = signed claim about someone’s public key

• More broadly: a signed a"esta&on about some claim

• Notation: 
	{ M }K = “message M encrypted with public key k” 
	{ M }K-1 = “message M signed w/ private key for K”

• E.g. M = “Nick's public key is KNick = 0xF32A99B...” 
Cert: M, 
	 { “Nick's public key … 0xF32A99B...” }K -1Jerry 
		 = 0x923AB95E12...9772F

17

Computer Science 161 Fall 2017 Weaver

18

Jerry Brown hearby asserts: 
Nick’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

Computer Science 161 Fall 2017 Weaver

19

Jerry Brown hearby asserts: 
Nick’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

This

Computer Science 161 Fall 2017 Weaver

20

Jerry Brown hearby asserts: 
Nick’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

is	computed	over	all	of	this

Computer Science 161 Fall 2017 Weaver

21

Jerry Brown hearby asserts: 
Grant’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
  and can be

validated using:

Computer Science 161 Fall 2017 Weaver

22

Jerry Brown hearby asserts: 
Grant’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

This:

Computer Science 161 Fall 2017 Weaver

If We Find This Cert  
Shoved Under Our Door …
• What can we figure out?

• If we know Jerry’s key, then whether he indeed signed the statement

• If we trust Jerry’s decisions, then we have confidence we really have Nick's

key

• Trust = ?

• Jerry won’t willy-nilly sign such statements

• Jerry won’t let his private key be stolen

23

Computer Science 161 Fall 2017 Weaver

Analyzing Certs Shoved Under Doors …

• How we get the cert doesn’t affect its utility

• Who gives us the cert doesn’t matter

• They’re not any more or less trustworthy because they did

• Possessing a cert doesn’t establish any identity!

• However: if someone demonstrates they can decrypt data
encrypted with Knick, then we have high confidence they
possess K-1Nick

• Same for if they show they can sign “using” KNick

24

Computer Science 161 Fall 2017 Weaver

Scaling Digital Certificates

• How can this possibly scale? Surely Jerry can’t sign
everyone’s public key!

• Approach #1: Introduce hierarchy via delegation

• { “Janet Napolitano’s public key is 0x... and I trust her to vouch for UC” }K -1Jerry

• { “Nicholas Dirk’s public key is 0x... and I trust him to vouch for UCB” }K -1Janet

• { “Jitendra Malik’s public key is 0x... and I trust him to vouch for EECS” }K -1NickDirk

• { “Nick Weaver's public key is 0x...” }K -1Jitendra

25

Computer Science 161 Fall 2017 Weaver

Scaling Digital Certificates, con’t

• Nick puts this last on his web page

• (or shoves it under your door)

• Anyone who can gather the intermediary keys can validate the
chain

• They can get these (other than Jerry’s) from anywhere because they can validate

them, too

• Approach #2: have multiple trusted parties who are in the
business of signing certs …

• (The certs might also be hierarchical, per Approach #1)

26

Computer Science 161 Fall 2017 Weaver

Certificate Authorities

• CAs are trusted parties in a Public Key Infrastructure (PKI)

• They can operate offline

• They sign (“cut”) certs when convenient, not on-the-fly (… though see

below ...)

• Suppose Alice wants to communicate confidentially w/ Bob:

• Bob gets a CA to issue {Bob’s public key is B} K -1CA

• Alice gets Bob’s cert any old way

• Alice uses her known value of KCA to verify cert’s signature

• Alice extracts B, sends {M}KB to Bob

27

Computer Science 161 Fall 2017 Weaver

28

Bob

b

CA

B

Is	this	
really	
Bob?

{Bob: B}K-1CA

Computer Science 161 Fall 2017 Weaver

29

Bob

b
B

Alice

Mi

{Bob: B}K-1CA

I’d	like	to	talk	
privately	with	
Bob

Computer Science 161 Fall 2017 Weaver

30

Bob

b
B

Alice

Mi

{Bob: B}K-1CA Does	CA’s	
signature	on	
B	validate?

Mi

Ci	=	E(Mi,	B)

Computer Science 161 Fall 2017 Weaver

31

Bob

b*

CA

B*

Is	this	
really	
Bob?

Mallory

X

Computer Science 161 Fall 2017 Weaver

32

Bob

CA

Is	this	
really	
Mal?

{Mal: B*}K-1CA

b*

Mallory

B*

Computer Science 161 Fall 2017 Weaver

33

BobAlice

Mi

{Mal: B*}K-1CA

b*

B*

Mallory

I’d	like	to	talk	
privately	with	
Bob

Computer Science 161 Fall 2017 Weaver

34

BobAlice

Mi

{Mal: B*}K-1CA Wait,	I	want	to	
talk	to	Bob,	not	
Mallory!

b*

B*

Mallory

X

Computer Science 161 Fall 2017 Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s
name to Mallory?

35

Computer Science 161 Fall 2017 Weaver

36

BobAlice

Mi

{Bob: B*}K-1CA

b*

B*

Mallory

I’d	like	to	talk	
privately	with	
Bob

{Bob: B*}K-1CA

Computer Science 161 Fall 2017 Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s
name to Mallory?

• E.g. Verisign issued a Microsoft.com	cert to a Random	Joe

• (Related problem: Bob realizes b has been stolen)

• How	do	we	recover	from	the	error?	
• Approach #1: expiration dates

• Mitigates possible damage

• But adds management burden

• Benign failures to renew will 

break normal operation
37

{Bob: B,	Good til:	
3/31/17}K-1CA

Computer Science 161 Fall 2017 Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

38

Computer Science 161 Fall 2017 Weaver

39

BobAlice

b*

B*

Mallory

Time	for	my	
weekly	revoked	
cert	download

CA

Revoked
Certs  
…
{Bob: B*}K-1CA

…CRL = Certificate
Revocation List

Computer Science 161 Fall 2017 Weaver

40

BobAlice

b*

B*

Mallory

Oof!

CA

Revoked
Certs  
…
{Bob: B*}K-1CA

…

CRL = Certificate
Revocation List

Computer Science 161 Fall 2017 Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

• Issues?

• Lists can get large

• Need to authenticate the list itself – how?

41

Computer Science 161 Fall 2017 Weaver

42

BobAlice

b*

B*

Mallory

Time	for	my	
weekly	revoked	
cert	download

CA

Revoked
Certs  
…
{Bob: B*}K-1CA

…CRL = Certificate
Revocation List

K-1CA

Computer Science 161 Fall 2017 Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

• Issues?

• Lists can get large

• Need to authenticate the list itself – how? Sign it!

• Mallory can exploit download lag

• What does Alice do if can’t reach CA for  

download?

• Assume all certs are invalid (fail-safe defaults)

• Wow, what an unhappy failure mode!

• Use old list: widens exploitation window 
if Mallory can “DoS” CA (DoS = denial-of-service)

43

Computer Science 161 Fall 2017 Weaver

The Facebook Problem: 
Applied Cryptography in Action
• Facebook Messenger now has an encrypted chat option

• Limited to their phone application

• The cryptography in general is very good but uninteresting

• Used a well regarded asynchronous messenger library (from Signal) with many good

properties

• When Alice wants to send a message to Bob

• Queries for Bob's public key from Facebook's server

• Encrypts message and send it to Facebook

• Facebook then forwards the message to Bob

• Both Alice and Bob are using encrypted and authenticated channels
to Facebook

44

Computer Science 161 Fall 2017 Weaver

Facebook's Unique Messenger 
Problem: Abuse
• Much of Facebook's biggest problem is dealing with abuse...

• What if either Alice or Bob is a stalker, an a-hole, or otherwise problematic?

• Aside: A huge amount of abuse is explicitly gender based, so I'm going to use "Alex" as the

abuser and "Bailey" as the victim through the rest of this example

• Facebook would expect the other side to complain

• And then perhaps Facebook would kick off the perpetrator for violating Facebook's

Terms of Service

• But fake abuse complaints are also a problem

• So can't just take them on face value

• And abusers might also want to release info publicly

• Want sender to be able to deny to the public but not to Facebook

45

Computer Science 161 Fall 2017 Weaver

Facebook's Problem 
Quantified
• Unless Bailey forwards the unencrypted message to

Facebook

• Facebook must not be able to see the contents of the message

• If Bailey does forward the unencrypted message to
Facebook

• Facebook must ensure that the message is what Alex sent to Bailey

• Nobody but Facebook should be able to verify this: 
No public signatures!

• Critical to prevent abusive release of messages to the public being verifiable
46

Computer Science 161 Fall 2017 Weaver

The Protocol 
In Action

47

Alex Bailey

What Is Bailey's Public  
Key?

Computer Science 161 Fall 2017 Weaver

Aside: Key Transparency...

• Both Alex and Bailey are trusting Facebook's honesty...

• What if Facebook gave Alex a different key for Bailey? How would he know?

• Facebook messenger has a nearly hidden option which allows
Alex to see Bailey's key

• If they ever get together, they can manually verify that Facebook was honest

• The mantra of central key servers: Trust but Verify

• The simple option is enough to force honesty, as each attempt to lie has some

probability of being caught

• This is the biggest weakness of Apple iMessage:

• iMessage has (fairly) good cryptography but there is no way to verify Apple's honesty

48

Computer Science 161 Fall 2017 Weaver

The Protocol 
In Action

49

Alex Bailey

{message=E(Kpub_b,
 M={"Hey Bailey I'm going to  
 say something abusive",  
 krand}),
 mac=HMAC(krand, M),
 to=Bailey}

{message=E(Kpub_b,
 M={"Hey Bailey I'm going to  
 say something abusive",  
 krand}),
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
 to, time})}

Computer Science 161 Fall 2017 Weaver

Some Notes

• Facebook can not read the message or even verify Alex's HMAC

• As the key for the HMAC is in the message itself

• Only Facebook knows their HMAC key

• And its the only information Facebook needs to retain in this protocol: 

Everything else can be discarded

• Bailey upon receipt checks that Alex's HMAC is correct

• Otherwise Bailey's messenger silently rejects the message

• Forces Alex's messenger to be honest about the HMAC, even thought Facebook never verified it

• Bailey trusts Facebook when Facebook says the message is from
Alex

• Bailey does not verify a signature, because there is no signature to verify

50

Computer Science 161 Fall 2017 Weaver

Now To 
Report Abuse

51

Alex Bailey

{Abuse{
 M={"Hey Bailey I'm going to  
 say something abusive",  
 krand}},
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
 to, time})}

Computer Science 161 Fall 2017 Weaver

Facebook's Verification

• First verify that Bailey correctly reported the message sent

• Verify fbmac=HMAC(Kfb,{mac,from,to,time})
• Only Facebook can do this verification since they keep Kfb secret

• This enables Facebook to confirm that this is the message that it relayed from Alex to
Bailey

• Then verify that Bailey didn't tamper with the message

• Verify mac=HMAC(krand,{M, krand})

• Now Facebook knows this was sent from Alex to Bailey and can
act accordingly

• But Bailey can't prove that Alex sent this message to anyone other than Facebook

• And Bailey can't tamper with the message because the HMAC is also a hash

52

Computer Science 161 Fall 2017 Weaver

Snake Oil Cryptography: 
Craptography
• "Snake Oil" refers to 19th century 

fraudulent "cures"

• Promises to cure practically every ailment

• Sold because there was no regulation and  

no way for the buyers to know

• The security field is practically full of Snake Oil Security
and Snake Oil Cryptography

• https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil

53

Computer Science 161 Fall 2017 Weaver

Anti-Snake Oil: 
NSA's CNSA cryptographic suite
• Successor to "Suite B"

• Unclassified algorithms approved for Top Secret:

• There is nothing higher than TS, you have "compartments" but those are access control modifiers

• https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

• Symmetric key, AES: 256b keys

• Hashing, SHA-384

• RSA/Diffie Helman: >= 3072b keys

• ECDHE/ECDSA: 384b keys over curve P-384

• In an ideal world, I'd only use those parameters,

• But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic curves,

plus the DJB curves and cyphers (ChaCha20)

• NSA has a requirement where a Top Secret communication captured today should not be

decryptable by an adversary 40 years from now!
54

Computer Science 161 Fall 2017 Weaver

Snake Oil Warning 
Signs...
• Amazingly long key lengths

• The NSA is super paranoid, and even they don't use >256b keys for symmetric key or >4096b for

RSA/DH public key

• So if a system claims super long keys, be suspicious

• New algorithms and crazy protocols

• There is no reason to use a novel block cipher, hash, public key algorithm, or protocol

• Even a "post quantum" public key algorithm should not be used alone: 

Combine it with a conventional public key algorithm

• Anyone who roles their own is asking for trouble!

• EG, Telegram

• "It's like someone who had never seen cake but heard it described tried to bake one.  

With thumbtacks and iron filings." Matthew D Green

• "Exactly! GLaDOS-cake encryption.  

Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan
55

Computer Science 161 Fall 2017 Weaver

Snake Oil Warning

Signs...
• "One Time Pads"

• One time pads are secure, if you actually have a true one time pad

• But almost all the snake oil advertising it as a "one time pad" isn't!

• Instead, they are invariably some wacky stream cypher

• Gobbledygook, new math, and "chaos"

• Kinda obvious, but such things are never a good sign

• Rigged "cracking contests"

• Usually "decrypt this message" with no context and no structure

• Almost invariably a single or a few unknown plaintexts with nothing else

• Again, Telegram, I'm looking at you here!

56

Computer Science 161 Fall 2017 Weaver

Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key

• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with somebody else

who doesn't have the same keys?

• Made worse by bad user interface and users who think rekeying
frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys

• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25

57

Computer Science 161 Fall 2017 Weaver

Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...

• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages

• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt

• It is hard to hide metadata well, but its easy to do things better than what PGP does

• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone

58

Computer Science 161 Fall 2017 Weaver

Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Ask them to mail it to you

• In an unencrypted channel?

• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be

removed?

59

Computer Science 161 Fall 2017 Weaver

Unusable: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do

anything

• So much of a nightmare that I'm not
going to bother learning it to teach you
how bad it is

• This is why last semester's python-based project

didn't give this raw

• But just to give you an idea: 
The command line OpenSSL utility
options:

60

Computer Science 161 Fall 2016 Popa and Weaver

Bitcoin's Goal

• A decentralized, distributed digital currency

• Decentralized: no point of authority or control

• Distributed: lots of independent systems, no central point of trust

• Digital Currency: Just that, a currency

• Bitcoin is censorship resistant money:

• Nobody can say "don't spend your money on X"

• Bitcoin's Crypto: Interesting

• So I will talk about it

• Bitcoin's Economics: Broken

• Bitcoin's Community: Bat-Shit Insane

• So I won't bother wasting people's time. This is a subject for a Beer Rant, not a lecture

61

Computer Science 161 Fall 2016 Popa and Weaver

Bitcoin’s Public Key Signature Algorithm 
ECDSA
• Elliptic Curve Digital Signature Algorithm

• So different math but conceptually similar to El Gamal and DSA

• 256b private key (32 bytes)

• Public key is 65 bytes

• Bitcoin “address” is not the public key but the hash of the public key

• RIPEMD-160(SHA-256(Kpub))

• Why double hashing? Its a common weirdness in Bitcoin.

• After adding a checksum and Base 58 encoding you get a “Bitcoin address” of type 1
you can send money to

• 1FuckBTCqwBQexxs9jiuWTiZeoKfSo9Vyi is a valid address

• I spent a lot of CPU time randomly generating private keys to find one that would match the desired

prefix
62

Computer Science 161 Fall 2016 Popa and Weaver

Interesting Implications of  
Hashed Public Keys
• The ECDSA public key is twice as large as the private key

• So hashing makes the public key a lot smaller

• But it makes the signatures themselves larger

• Since any signature also needs to include the full public key

• Validation of a signature becomes a 2-part process

• Validate that H(Kpub) = Address

• Validate that the signature is valid

• But if a private key is only used once, attacks which require
the public key in advance can not work!

63

Computer Science 161 Fall 2016 Popa and Weaver

Why This Matters: 
Quantum Computing
• A Quantum computer rips through elliptic curve schemes as well as

classic discrete log (Diffie/Hellman) and RSA type schemes

• Given the public key it is trivial to find the private key

• Since the private key controls money, this would be catastrophic

• But at the same time, we don’t know how to build a quantum computer big enough to
factor a number much larger than 15

• If you never use a private key more than once…

• By instead transferring all unspent money to a new random private key

• A Quantum Computer can’t steal your money if it can't come up with a solution before your

spending is recorded!

• Many cryptographic systems need to worry today about Quantum
computers which don’t yet exist.

64

Computer Science 161 Fall 2016 Popa and Weaver

Hash Chains

• If a data structure includes a hash of the
previous block of data

• This forms a “hash chain”

• So rather than the hash of a block validating
just the block

• The inclusion of the previous block’s hash validates all the

previous blocks

• This also makes it easy to add blocks to data
structures

• Only need to hash block + hash of previous block, rather

than rehash everything: 
How you can efficiently hash an "append only" datastructure

65

Block N
H(Block N-1)

lots of other data

Block N - 1  
H(Block N-2)

lots of other data

Block N - 2  
H(Block N-3)

lots of other data

Computer Science 161 Fall 2016 Popa and Weaver

Merkle Trees

• Lets say you have a lot of elements

• And you want to add or modify elements

• And you want to make the hash of the set
easy to update

• Enter hash trees/merkle trees

• Elements 0, 1, 2, 3, 4, 5...

• H(0), H(1), H(2)...

• H(H(0) + H(1)), H(H(2)+H(3))...

• The final hash is the root of the top of the tree.

• And so on until you get to the root

• Allows you to add an element and update lg(n) hashes 

Rather than having to rehash all the data
66

Image Stolen from Wikipedia

Computer Science 161 Fall 2016 Popa and Weaver

Proof of Work 
To Establish History
• Idea: If creating a block requires so much effort

• And it includes a pointer to all previous blocks

• Changing history becomes expensive:

• To rewrite the last k blocks of history requires the same amount of effort as recording

those k blocks the first time around

• But at the same time, it must be cheap to verify the work was done

• Easy proof of work: generation partial hash collisions

• If the first N bits of a hash have to be zero…

• You are expected to need to try 2N times to find a collision

• But you only need to do a single hash invocation to check if someone else did the work

67

Computer Science 161 Fall 2016 Popa and Weaver

Taken Together this creates

Bitcoin
• Every Bitcoin address (H(Kpub)) has a corresponding balance

in a public ledger (the Blockchain)

• To spend Bitcoin…

• Sign a message saying “Pay to address A”

• Signature includes the address it is coming from

• Broadcast that message through the Bitcoin P2P network

• The rest of the P2P network…

• Confirms that both the signature is valid and the balance exists

• Then attempts to “mine” it into a new block on the Blockchain

• This acts to confirm the transaction

68

Computer Science 161 Fall 2016 Popa and Weaver

Bitcoin Transactions

• A transaction consists of one or more inputs and 0 or more outputs

• Each input refers to a single unspent transaction output: 

the input spends the entire output in the transaction

• Each input is signed by the corresponding private key and includes the public key

• Each output simply refers to a destination address and amount

• If you want to make change, just send that to a new destination address or send it back to one of the

input addresses

• Sum(outputs) <= Sum(inputs)
• Any extra is paid to whoever mines the block (the Transaction Fee)

• Validating transactions:

• All inputs must refer to previously unspent outputs

• No double-spending, but requires knowing ALL previous Bitcoin transactions to validate!

• All inputs must cryptographically validate
69

Computer Science 161 Fall 2016 Popa and Weaver

The Blockchain… 
Protected by Proof of Work
• All Bitcoin miners take all unverified transactions they want and compose them into a

single block

• Block header contains a timestamp, a nonce, the hash of the previous block, and the hash of all transactions for

this block

• Transactions are hashed in a Merkle tree to make it easy to add transactions to the block in progress

• Now all the miners try to find a hash collision:

• Modifying the block so that H(Block) < “difficulty” value

• First by modifying the nonce value and/or timestamp and then modifying the coinbase, a string in the "pay from" for the first

transaction

• Once one finds a hash collision, it broadcasts the new block to the entire Bitcoin network

• Every other miner first verifies that block and then starts working on the next block

• Rule is always trust the longest chain

• Now to rewrite history to depth N it takes the same amount of work as used to generate the chain you are rewriting

• But at the same time, the current chain keeps growing!

70

Computer Science 161 Fall 2016 Popa and Weaver

The Coinbase Transaction

• The first transaction in any block is special

• It actually has 0 inputs, instead it has a small amount of arbitrary data called the

"coinbase"

• The coinbase data serves two purposes:

• It allows the miner to make a comment

• EG, claim credit, vote on proposals, etc

• It can be easily changed for searching for hash collisions

• When changing the coinbase the miner needs to update the Merkel tree but that's relatively cheap

• The output of this transaction is the miner's reward

• The miner fills it out as "pay to me"

• Both the current block reward (now at 12.5 BTC/block) and any value not otherwise spent

71

Computer Science 161 Fall 2016 Popa and Weaver

Bitcoin Balances

• Each address has a balance associated with it

• The balance is in “Satoshi”, a fixed-point value = 0.00000001 BTC

• There have been Bitcoin systems with bugs related to fixed vs floating point issues

• This is actually the sum of all unspent outputs sent to this
address

• Calculating an address's balance requires looking at every Bitcoin transaction ever

done

• This is a problem!

• Bitcoin requires knowing every transaction from the dawn of the Blockchain in

order to know that things are valid

• And currently this data grows by 1 MB every 10 minutes!

72

