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Key (mis)Management 
Applied  
Crypto 

and Crapto
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RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably 

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is


• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman 

problem
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El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared


• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key


• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob

• Maps message m to create m', calculates c2 = m' * s mod p  

• Bob then sends {c1, c2}
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El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p  
• Then Alice calculates the inverse of the mapping to get m


• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2  = m1' * s mod p 

c2' = m2' * s mod p 
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2' 
• So if you know m1...
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DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256 
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters


• Alice creates her own random private key x < q

• Public key y = gx mod p
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Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q 
• If r = 0, start again


• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again


• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)


• Verification

• w = s-1 mod q 
• u1 = H(m) * w mod q 
• u2 = r * w mod q 
• v = (gu1yu2 mod p) mod q 
• Validate that v = r
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But Easy To Screw Up...

• k is not just a nonce...  It must be random and secret

• If you know k, you can calculate x


• And even if you just reuse a random k... 
for two signatures sa and sb


• A bit of algebra proves that k = (HA – HB) / (sa – sb) 

•  A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
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And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed 

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems 

(Linux) that they then removed 


• Of course this was catnip to reverse 
engineers

• Best way to get people interested: 

remove Linux from a device...


• It turns for out one of the key authentication 
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!
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And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the same 

value multiple times


• Multiple Bitcoin wallet apps on Android were 
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA

• Message is broadcast publicly for all to see


• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k


• So of course someone scanned for all such  
Bitcoin transactions
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How Can We Communicate With Someone New?

• Public-key crypto gives us amazing capabilities to achieve 
confidentiality, integrity & authentication without shared 
secrets …


• But how do we solve MITM attacks?

• How can we trust we have the true public key for someone 

we want to communicate with?


• Ideas?
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Trusted Authorities

• Suppose there’s a party that everyone agrees to trust to 
confirm each individual’s public key


• Say the Governor of California


• Issues with this approach?

• How can everyone agree to trust them?

• Scaling: huge amount of work; single point of failure …

• ... and thus Denial-of-Service concerns

• How do you know you’re talking to the right authority??
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Trust Anchors

• Suppose the trusted party distributes their key so everyone 
has it …
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Jerry Brown’s Public Key is 
0x6a128b3d3dc67edc74d690b19e072f64. 
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Trust Anchors

• Suppose the trusted party distributes their key so everyone 
has it …


• We can then use this to bootstrap trust

• As long as we have confidence in the decisions that that party makes
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Digital Certificates

• Certificate (“cert”) = signed claim about someone’s public key

• More broadly: a signed a"esta&on about some claim


• Notation: 
	{ M }K = “message M encrypted with public key k” 
	{ M }K-1 = “message M signed w/ private key for K”


• E.g. M = “Nick's public key is KNick = 0xF32A99B...” 
Cert: M, 
	   { “Nick's public key … 0xF32A99B...” }K -1Jerry 
		 = 0x923AB95E12...9772F
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18

Jerry Brown hearby asserts: 
Nick’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 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19

Jerry Brown hearby asserts: 
Nick’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

This
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Jerry Brown hearby asserts: 
Nick’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

is	computed	over	all	of	this
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Jerry Brown hearby asserts: 
Grant’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
  and can be 

validated using:
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22

Jerry Brown hearby asserts: 
Grant’s public key is KGrant = 0xF32A99B...
The signature for this statement using  
K-1Jerry is 0x923AB95E12...9772F 
 
 

This:
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If We Find This Cert  
Shoved Under Our Door …
• What can we figure out?

• If we know Jerry’s key, then whether he indeed signed the statement

• If we trust Jerry’s decisions, then we have confidence we really have Nick's 

key


• Trust = ?

• Jerry won’t willy-nilly sign such statements

• Jerry won’t let his private key be stolen
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Analyzing Certs Shoved Under Doors …

• How we get the cert doesn’t affect its utility

• Who gives us the cert doesn’t matter

• They’re not any more or less trustworthy because they did

• Possessing a cert doesn’t establish any identity!


• However: if someone demonstrates they can decrypt data 
encrypted with Knick, then we have high confidence they 
possess K-1Nick


• Same for if they show they can sign “using” KNick
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Scaling Digital Certificates

• How can this possibly scale?  Surely Jerry can’t sign 
everyone’s public key!


• Approach #1: Introduce hierarchy via delegation

• { “Janet Napolitano’s public key is 0x... and I trust her to vouch for UC” }K -1Jerry

• { “Nicholas Dirk’s public key is 0x... and I trust him to vouch for UCB” }K -1Janet

• { “Jitendra Malik’s public key is 0x... and I trust him to vouch for EECS” }K -1NickDirk

• { “Nick Weaver's public key is 0x...” }K -1Jitendra
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Scaling Digital Certificates, con’t

• Nick puts this last on his web page

• (or shoves it under your door)


• Anyone who can gather the intermediary keys can validate the 
chain

• They can get these (other than Jerry’s) from anywhere because they can validate 

them, too


• Approach #2: have multiple trusted parties who are in the 
business of signing certs …

• (The certs might also be hierarchical, per Approach #1)
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Certificate Authorities

• CAs are trusted parties in a Public Key Infrastructure (PKI)

• They can operate offline

• They sign (“cut”) certs when convenient, not on-the-fly (… though see 

below ...)


• Suppose Alice wants to communicate confidentially w/ Bob:

• Bob gets a CA to issue {Bob’s public key is B} K -1CA

• Alice gets Bob’s cert any old way

• Alice uses her known value of KCA to verify cert’s signature

• Alice extracts B, sends {M}KB to Bob

27
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Bob

b

CA

B

Is	this	
really	
Bob?

{Bob: B}K-1CA
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Bob

b
B

Alice

Mi

{Bob: B}K-1CA

I’d	like	to	talk	
privately	with	
Bob
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Bob

b
B

Alice

Mi

{Bob: B}K-1CA Does	CA’s	
signature	on	
B	validate?

Mi

Ci	=	E(Mi,	B)
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Bob

b*

CA

B*

Is	this	
really	
Bob?

Mallory

X
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Bob

CA

Is	this	
really	
Mal?

{Mal: B*}K-1CA

b*

Mallory

B*
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BobAlice

Mi

{Mal: B*}K-1CA

b*

B*

Mallory

I’d	like	to	talk	
privately	with	
Bob
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BobAlice

Mi

{Mal: B*}K-1CA Wait,	I	want	to	
talk	to	Bob,	not	
Mallory!

b*

B*

Mallory

X
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Revocation

• What do we do if a CA screws up and issues a cert in Bob’s 
name to Mallory?
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36

BobAlice

Mi

{Bob: B*}K-1CA

b*

B*

Mallory

I’d	like	to	talk	
privately	with	
Bob

{Bob: B*}K-1CA
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Revocation

• What do we do if a CA screws up and issues a cert in Bob’s 
name to Mallory?

• E.g. Verisign issued a Microsoft.com	cert to a Random	Joe

• (Related problem: Bob realizes b has been stolen)

• How	do	we	recover	from	the	error?	
• Approach #1: expiration dates

• Mitigates possible damage

• But adds management burden

• Benign failures to renew will 

break normal operation
37

{Bob: B,	Good til:	
3/31/17}K-1CA
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)
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39

BobAlice

b*

B*

Mallory

Time	for	my	
weekly	revoked	
cert	download

CA

Revoked 
Certs  
…
{Bob: B*}K-1CA

…CRL = Certificate 
Revocation List
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BobAlice

b*

B*

Mallory

Oof!

CA

Revoked 
Certs  
…
{Bob: B*}K-1CA

…

CRL = Certificate 
Revocation List
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)


• Issues?

• Lists can get large

• Need to authenticate the list itself – how?
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42

BobAlice

b*

B*

Mallory

Time	for	my	
weekly	revoked	
cert	download

CA

Revoked 
Certs  
…
{Bob: B*}K-1CA

…CRL = Certificate 
Revocation List

K-1CA
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)


• Issues?

• Lists can get large

• Need to authenticate the list itself – how?  Sign it!

• Mallory can exploit download lag

• What does Alice do if can’t reach CA for  

download?

• Assume all certs are invalid (fail-safe defaults)

• Wow, what an unhappy failure mode!


• Use old list: widens exploitation window 
if Mallory can “DoS” CA  (DoS = denial-of-service)
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The Facebook Problem: 
Applied Cryptography in Action
• Facebook Messenger now has an encrypted chat option

• Limited to their phone application


• The cryptography in general is very good but uninteresting

• Used a well regarded asynchronous messenger library (from Signal) with many good 

properties


• When Alice wants to send a message to Bob

• Queries for Bob's public key from Facebook's server

• Encrypts message and send it to Facebook

• Facebook then forwards the message to Bob


• Both Alice and Bob are using encrypted and authenticated channels 
to Facebook
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Facebook's Unique Messenger 
Problem: Abuse
• Much of Facebook's biggest problem is dealing with abuse...

• What if either Alice or Bob is a stalker, an a-hole, or otherwise problematic?

• Aside: A huge amount of abuse is explicitly gender based, so I'm going to use "Alex" as the 

abuser and "Bailey" as the victim through the rest of this example


• Facebook would expect the other side to complain

• And then perhaps Facebook would kick off the perpetrator for violating Facebook's 

Terms of Service


• But fake abuse complaints are also a problem

• So can't just take them on face value


• And abusers might also want to release info publicly

• Want sender to be able to deny to the public but not to Facebook
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Facebook's Problem 
Quantified
• Unless Bailey forwards the unencrypted message to 

Facebook

• Facebook must not be able to see the contents of the message


• If Bailey does forward the unencrypted message to 
Facebook


• Facebook must ensure that the message is what Alex sent to Bailey


• Nobody but Facebook should be able to verify this: 
No public signatures!


• Critical to prevent abusive release of messages to the public being verifiable
46
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The Protocol 
In Action

47

Alex Bailey

What Is Bailey's Public  
Key?
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Aside: Key Transparency...

• Both Alex and Bailey are trusting Facebook's honesty...

• What if Facebook gave Alex a different key for Bailey?  How would he know?


• Facebook messenger has a nearly hidden option which allows 
Alex to see Bailey's key

• If they ever get together, they can manually verify that Facebook was honest


• The mantra of central key servers: Trust but Verify

• The simple option is enough to force honesty, as each attempt to lie has some 

probability of being caught


• This is the biggest weakness of Apple iMessage:

• iMessage has (fairly) good cryptography but there is no way to verify Apple's honesty
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The Protocol 
In Action

49

Alex Bailey

{message=E(Kpub_b, 
  M={"Hey Bailey I'm going to  
     say something abusive",  
     krand}),
 mac=HMAC(krand, M),
 to=Bailey}

{message=E(Kpub_b, 
  M={"Hey Bailey I'm going to  
     say something abusive",  
     krand}),
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
                 to, time})}
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Some Notes

• Facebook can not read the message or even verify Alex's HMAC

• As the key for the HMAC is in the message itself


• Only Facebook knows their HMAC key

• And its the only information Facebook needs to retain in this protocol: 

Everything else can be discarded


• Bailey upon receipt checks that Alex's HMAC is correct

• Otherwise Bailey's messenger silently rejects the message

• Forces Alex's messenger to be honest about the HMAC, even thought Facebook never verified it


• Bailey trusts Facebook when Facebook says the message is from 
Alex

• Bailey does not verify a signature, because there is no signature to verify

50
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Now To 
Report Abuse

51

Alex Bailey

{Abuse{ 
  M={"Hey Bailey I'm going to  
     say something abusive",  
     krand}},
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
                 to, time})}
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Facebook's Verification

• First verify that Bailey correctly reported the message sent

• Verify fbmac=HMAC(Kfb,{mac,from,to,time}) 
• Only Facebook can do this verification since they keep Kfb secret


• This enables Facebook to confirm that this is the message that it relayed from Alex to 
Bailey


• Then verify that Bailey didn't tamper with the message

• Verify mac=HMAC(krand,{M, krand})


• Now Facebook knows this was sent from Alex to Bailey and can 
act accordingly

• But Bailey can't prove that Alex sent this message to anyone other than Facebook

• And Bailey can't tamper with the message because the HMAC is also a hash
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Snake Oil Cryptography: 
Craptography
• "Snake Oil" refers to 19th century 

fraudulent "cures"

• Promises to cure practically every ailment

• Sold because there was no regulation and  

no way for the buyers to know


• The security field is practically full of Snake Oil Security 
and Snake Oil Cryptography


• https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil
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Anti-Snake Oil: 
NSA's CNSA cryptographic suite
• Successor to "Suite B"

• Unclassified algorithms approved for Top Secret:

• There is nothing higher than TS, you have "compartments" but those are access control modifiers

• https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm


• Symmetric key, AES: 256b keys

• Hashing, SHA-384

• RSA/Diffie Helman: >= 3072b keys

• ECDHE/ECDSA: 384b keys over curve P-384


• In an ideal world, I'd only use those parameters, 

• But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic curves, 

plus the DJB curves and cyphers (ChaCha20)

• NSA has a requirement where a Top Secret communication captured today should not be 

decryptable by an adversary 40 years from now!
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Snake Oil Warning 
Signs...
• Amazingly long key lengths

• The NSA is super paranoid, and even they don't use >256b keys for symmetric key or >4096b for 

RSA/DH public key

• So if a system claims super long keys, be suspicious


• New algorithms and crazy protocols

• There is no reason to use a novel block cipher, hash, public key algorithm, or protocol

• Even a "post quantum" public key algorithm should not be used alone: 

Combine it with a conventional public key algorithm


• Anyone who roles their own is asking for trouble!

• EG, Telegram

• "It's like someone who had never seen cake but heard it described tried to bake one.  

With thumbtacks and iron filings."  Matthew D Green

• "Exactly! GLaDOS-cake encryption.  

Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan
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Snake Oil Warning

Signs...
• "One Time Pads"

• One time pads are secure, if you actually have a true one time pad

• But almost all the snake oil advertising it as a "one time pad" isn't!

• Instead, they are invariably some wacky stream cypher


• Gobbledygook, new math, and "chaos"

• Kinda obvious, but such things are never a good sign


• Rigged "cracking contests"

• Usually "decrypt this message" with no context and no structure

• Almost invariably a single or a few unknown plaintexts with nothing else

• Again, Telegram, I'm looking at you here!
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Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key


• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with somebody else 

who doesn't have the same keys?


• Made worse by bad user interface and users who think rekeying 
frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys


• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25
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Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...


• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages


• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt


• It is hard to hide metadata well, but its easy to do things better than what PGP does


• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone
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Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Ask them to mail it to you

• In an unencrypted channel?


• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be 

removed?
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Unusable: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do 

anything


• So much of a nightmare that I'm not 
going to bother learning it to teach you 
how bad it is

• This is why last semester's python-based project 

didn't give this raw


• But just to give you an idea: 
The command line OpenSSL utility 
options:
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Bitcoin's Goal

• A decentralized, distributed digital currency

• Decentralized: no point of authority or control 

• Distributed: lots of independent systems, no central point of trust

• Digital Currency: Just that, a currency


• Bitcoin is censorship resistant money:

• Nobody can say "don't spend your money on X"


• Bitcoin's Crypto: Interesting

• So I will talk about it


• Bitcoin's Economics: Broken

• Bitcoin's Community: Bat-Shit Insane

• So I won't bother wasting people's time.  This is a subject for a Beer Rant, not a lecture
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Bitcoin’s Public Key Signature Algorithm 
ECDSA
• Elliptic Curve Digital Signature Algorithm

• So different math but conceptually similar to El Gamal and DSA


• 256b private key (32 bytes)

• Public key is 65 bytes


• Bitcoin “address” is not the public key but the hash of the public key

• RIPEMD-160(SHA-256(Kpub)) 

• Why double hashing?  Its a common weirdness in Bitcoin.


• After adding a checksum and Base 58 encoding you get a “Bitcoin address” of type 1 
you can send money to


• 1FuckBTCqwBQexxs9jiuWTiZeoKfSo9Vyi is a valid address

• I spent a lot of CPU time randomly generating private keys to find one that would match the desired 

prefix
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Interesting Implications of  
Hashed Public Keys
• The ECDSA public key is twice as large as the private key

• So hashing makes the public key a lot smaller

• But it makes the signatures themselves larger

• Since any signature also needs to include the full public key


• Validation of a signature becomes a 2-part process

• Validate that H(Kpub) = Address

• Validate that the signature is valid


• But if a private key is only used once, attacks which require 
the public key in advance can not work!
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Why This Matters: 
Quantum Computing
• A Quantum computer rips through elliptic curve schemes as well as 

classic discrete log (Diffie/Hellman) and RSA type schemes

• Given the public key it is trivial to find the private key

• Since the private key controls money, this would be catastrophic


• But at the same time, we don’t know how to build a quantum computer big enough to 
factor a number much larger than 15


• If you never use a private key more than once…

• By instead transferring all unspent money to a new random private key

• A Quantum Computer can’t steal your money if it can't come up with a solution before your 

spending is recorded!


• Many cryptographic systems need to worry today about Quantum 
computers which don’t yet exist.
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Hash Chains

• If a data structure includes a hash of the 
previous block of data

• This forms a “hash chain”


• So rather than the hash of a block validating 
just the block

• The inclusion of the previous block’s hash validates all the 

previous blocks


• This also makes it easy to add blocks to data 
structures

• Only need to hash block + hash of previous block, rather 

than rehash everything: 
How you can efficiently hash an "append only" datastructure

65

Block N
H(Block N-1)

lots of other data

Block N - 1  
H(Block N-2)

lots of other data

Block N - 2  
H(Block N-3)

lots of other data
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Merkle Trees

• Lets say you have a lot of elements

• And you want to add or modify elements


• And you want to make the hash of the set 
easy to update


• Enter hash trees/merkle trees

• Elements 0, 1, 2, 3, 4, 5...

• H(0), H(1), H(2)...

• H(H(0) + H(1)), H(H(2)+H(3))...

• The final hash is the root of the top of the tree.


• And so on until you get to the root

• Allows you to add an element and update lg(n) hashes 

Rather than having to rehash all the data
66
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Proof of Work 
To Establish History
• Idea: If creating a block requires so much effort

• And it includes a pointer to all previous blocks

• Changing history becomes expensive:

• To rewrite the last k blocks of history requires the same amount of effort as recording 

those k blocks the first time around

• But at the same time, it must be cheap to verify the work was done


• Easy proof of work: generation partial hash collisions

• If the first N bits of a hash have to be zero…

• You are expected to need to try 2N times to find a collision

• But you only need to do a single hash invocation to check if someone else did the work
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Taken Together this creates

Bitcoin
• Every Bitcoin address (H(Kpub)) has a corresponding balance 

in a public ledger (the Blockchain)

• To spend Bitcoin…

• Sign a message saying “Pay to address A”

• Signature includes the address it is coming from

• Broadcast that message through the Bitcoin P2P network


• The rest of the P2P network…

• Confirms that both the signature is valid and the balance exists

• Then attempts to “mine” it into a new block on the Blockchain

• This acts to confirm the transaction
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Bitcoin Transactions

• A transaction consists of one or more inputs and 0 or more outputs

• Each input refers to a single unspent transaction output: 

the input spends the entire output in the transaction

• Each input is signed by the corresponding private key and includes the public key


• Each output simply refers to a destination address and amount

• If you want to make change, just send that to a new destination address or send it back to one of the 

input addresses


• Sum(outputs) <= Sum(inputs) 
• Any extra is paid to whoever mines the block (the Transaction Fee)


• Validating transactions:

• All inputs must refer to previously unspent outputs

• No double-spending, but requires knowing ALL previous Bitcoin transactions to validate!


• All inputs must cryptographically validate
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The Blockchain… 
Protected by Proof of Work
• All Bitcoin miners take all unverified transactions they want and compose them into a 

single block

• Block header contains a timestamp, a nonce, the hash of the previous block, and the hash of all transactions for 

this block

• Transactions are hashed in a Merkle tree to make it easy to add transactions to the block in progress


• Now all the miners try to find a hash collision:

• Modifying the block so that H(Block) < “difficulty” value

• First by modifying the nonce value and/or timestamp and then modifying the coinbase, a string in the "pay from" for the first 

transaction


• Once one finds a hash collision, it broadcasts the new block to the entire Bitcoin network

• Every other miner first verifies that block and then starts working on the next block


• Rule is always trust the longest chain

• Now to rewrite history to depth N it takes the same amount of work as used to generate the chain you are rewriting

• But at the same time, the current chain keeps growing!
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The Coinbase Transaction

• The first transaction in any block is special

• It actually has 0 inputs, instead it has a small amount of arbitrary data called the 

"coinbase"


• The coinbase data serves two purposes:

• It allows the miner to make a comment

• EG, claim credit, vote on proposals, etc


• It can be easily changed for searching for hash collisions

• When changing the coinbase the miner needs to update the Merkel tree but that's relatively cheap


• The output of this transaction is the miner's reward

• The miner fills it out as "pay to me"

• Both the current block reward (now at 12.5 BTC/block) and any value not otherwise spent
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Bitcoin Balances

• Each address has a balance associated with it

• The balance is in “Satoshi”, a fixed-point value = 0.00000001 BTC

• There have been Bitcoin systems with bugs related to fixed vs floating point issues


• This is actually the sum of all unspent outputs sent to this 
address

• Calculating an address's balance requires looking at every Bitcoin transaction ever 

done


• This is a problem!

• Bitcoin requires knowing every transaction from the dawn of the Blockchain in 

order to know that things are valid

• And currently this data grows by 1 MB every 10 minutes!
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