
Homework 2 Solutions
CS161 Computer Security, Spring 2008

1. Signatures and Attacks

Recall that to use the ElGamal signature scheme, Alice randomly se-
lects her private signing key x ∈ Zp and computes her public verification
key as y = gx mod p, where p is a large prime and g is a publicly known
generator of Z∗p. To sign a message m ∈ Z∗p, Alice first picks a random
integer 1 ≤ k < p− 1 such that gcd(k, p− 1) = 1. Next she computes
r = gk mod p and s = k−1(m−xr) mod p−1. The signature on m is
σ = (r, s). If Bob wishes to verify whether a purported signature (r, s)
corresponds to a message m and Alice’s public key y, he checks that
yrrs ≡ gm mod p, which will be true if it was computed as described.

(a) (3 points) Mallory has discovered a bug in a system operated
by Alice. Under certain circumstances, when signing a message
within some protocol, Alice’s system will not pick k randomly as
intended, but instead use some specific value. Mallory doesn’t
know which value this is, but she has managed to intercept two
different messages which have been signed using that same value
for k.

Assume σ1 = (r, s1) and σ2 = (r, s2) are valid signatures on mes-
sages m1 and m2 respectively, and that they were generated using
Alice’s private key and the same value for k (thus also causing the
“r” values to be equal). Show how Mallory can compute k given
m1, m2, σ1, and σ2.

Answer: First, attempt to invert s1 − s2 modulo p − 1 to obtain
(s1 − s2)

−1. Many students noticed that s1 − s2 may not have an
inverse modulo p− 1. It turns out that, depending on the details
of how p was selected, it very often will have an inverse. But
as far as the security of the scheme is concerned, this attack is
significant whenever it can be completed with some non-negligible

1

probability.1 Hence, we will just assume we can invert s1 − s2 as
stated in the errata to the homework which was emailed out.

Next, compute (s1− s2)
−1(m1−m2) mod p−1. This will end up

being k, as we show below.

(s1 − s2)
−1(m1 −m2) ≡ (k−1(m1 − xr)− k−1(m2 − xr))−1(m1 −m2) mod p− 1

≡ (k−1m1 − k−1xr − k−1m2 + k−1xr)−1(m1 −m2) mod p− 1

≡ k−1·−1(m1 −m2)
−1(m1 −m2) mod p− 1

≡ k mod p− 1

(b) (3 points) Once Mallory has done that, she can do something much
worse. Show how Mallory can use m1, σ1, and k to achieve a total
break of the signature scheme, that is, compute Alice’s private key
x.

Answer: Once you have k, compute x as follows.

g−k(m1 − ks1) ≡ r−1(m1 − kk−1(m1 − xr)) mod p− 1

≡ r−1(m1 −m1 + xr) mod p− 1

≡ r−1xr mod p− 1

≡ x mod p− 1

(c) (6 points) As Mallory was busy using Alice’s private key to rob,
defame, and mock her, Bob was implementing his own system
which employs ElGamal signatures. Fortunately, his implementa-
tion did not have the same bug. However, Mallory next noticed
a more subtle problem with the ElGamal signature scheme as de-
scribed above, even when it is implemented correctly. She found
a flaw in the scheme allowing an existential forgery, that is, the
production of a signature on some message (but not necessarily
any message you want).

Show how, using only Bob’s public key y′, Mallory can compute
a valid signature on some message m. The message need not
be anything meaningful; in particular, it is fine if it is a random
element in Z∗p.

Answer: Choose any integers u, v ∈ Z∗p. Then compute

r = guyv mod p

= gu+xv mod p

1For example, better than exponentially small with respect to the length of p.

2

and
s = −rv−1 mod p− 1 .

Define m = su mod p − 1. Then (r, s) is a valid signature on m
because

yrrs ≡ gxrg(u+xv)s mod p

≡ gxr+us+xvs mod p

≡ gxr+m+xv(−rv−1) mod p

≡ gm+xr−xrvv−1

mod p

≡ gm mod p

(d) (5 points) What is a simple way to modify the (naive) version of
ElGamal signatures given in this problem to prevent this existen-
tial forgery attack?

Answer: Hash the message before signing it. Another acceptable
method would be to add enough redundancy (e.g., by padding
with zeros or adding a checksum) to the message so that a random
element of Z∗p is unlikely to be valid.

2. Secret Sharing

In one of lectures covered by this homework, we discuss schemes for
sharing a secret among a group of people so that various subsets of the
group will be able to reconstruct the secret by combining their shares.
It turns out you don’t need computers or sophisticated mathematics to
accomplish this – you can implement even some of the more complex
secret sharing scenarios using nothing but sheets that can be overlaid
on one another.

If you are reading a hardcopy of this homework assignment that was
handed out in class, you have probably already noticed that the last
page is a transparency with a pattern on it. You have received one of
five different such transparencies (“Share A” - “Share E”); each one is
a share of a secret image.

To reconstruct the secret image, briefly get together with some of your
classmates to collect one copy of each of the five shares. Try overlaying
various combinations of two or more shares to see if you can reveal the
image.

3

Some combinations of shares (in particular, any share by itself) will
yield zero information about the secret. The other combinations all
completely reveal the image (although some make it easier to see than
others).

Here are a couple practical tips. If the sheets are misaligned by even a
few pixels, the image will not reconstruct properly. Since the pixels are
so small, you need to align the sheets very precisely for this to work.
Also, it will be easier to see the image if you lay the sheets on a white
background for better contrast.

Collaboration is acceptable on parts (a) and (b) of this problem (and
necessary to obtain the secret!), but not on part (c). Also, we have
posted a pdf of the transparencies and png’s of the raw patterns at
http://inst.eecs.berkeley.edu/~cs161/sp08/hw02images.tar.gz.
If you prefer, feel free to download these and print out your own sheets
or assemble the images in an image editor. If you are curious about
how all this is accomplished, http://tinyurl.com/3c8o6m is a good
starting point.

(a) (1 point) Find a combination of shares that reconstructs the image
and list the letters of those shares here. What does the image look
like?

Answer: Any list of three shares is a correct answer. The image
is the text “UCB”.

Note that while it is often difficult to get three of the physical
transparencies to clearly show the image, overlaying the images in
an image editor clearly reveals it. Using more than three trans-
parencies makes the image easier to see.

(b) (3 points) Experiment with other combinations of shares to deter-
mine which sets of shares reconstruct the image and which reveal
no information. State the access policy these shares implement.
For example, your answer might be 2 out of 5, 5 out of 5, or some
more complicated access policy like (A ∧B) ∨ C ∨ (B ∧D ∧ E).

Answer: It is a 3 out of 5 scheme.

(c) (5 points) Having seen a demonstration of these techniques, Alice
decides to try to devise her own scheme, specifically, a 3 out of 3
scheme. Her idea works as follows.

Each pixel of the source image will be represented by a 3 by 3
grid of subpixels in the shares. To generate the shares for a white

4

pixel in the original image, Alice randomly selects three subpixels,
and darkens those same subpixels in the each of the shares. To
generate the shares for a black pixel in the original image, Alice
randomly selects three subpixels to darken in the first share. Next,
she randomly selects three subpixels other than those to darken
in the second share. Finally, the remaining three subpixels which
were darkened in neither of the first two shares are darkened in
the third share.

reconstructed image:

shares:

original image:

black original pixel white original pixel

An example of this process is shown above. As you can see, when
all three shares are combined, a region corresponding to a black
pixel in the original image will be completely dark, while a region
corresponding to a white pixel will be two thirds white.

Does Alice’s scheme offer perfect (i.e., information theoretic secu-
rity)? If your answer is yes, show that any set of shares other than
all three reveals nothing about the original image. If your answer
is no, explain why this is not the case.

Answer: No, it is not a secure 3 out of 3 scheme. The image
can be computed from any two shares. Wherever a 3 by 3 grid
of subpixels is the same in two shares, the corresponding pixel of
the image is white, everywhere else it is black. The scheme is,
however, a secure 2 out of 3 scheme.

3. Zero-Knowledge

“There are known knowns. These are things we know
that we know. There are known unknowns. That is to say,
there are things that we know we don’t know. But there are
also unknown unknowns. There are things we don’t know we

5

don’t know,” a U.S. Secretary of Defense is quoted as saying.
One might add, “And there is zero-knowledge. These are
things we know that somebody else knows, and we provably
cannot know what they are are.”

— Complexity Theory and Cryptology, Jörg Rothe

Suppose we have an undirected graph G = (N,E), where N is a set of
nodes and we represent the edges as a subset E of N ×N . Since G is
undirected, E is a symmetric relation on N .

Now for any edge (n1, n2) ∈ E, we will say that the edge is flagged by
the node n1 and the node n2. Also, we say that a subset of the nodes
N ′ ⊆ N flags an edge e ∈ E if some n ∈ N ′ flags e.

It happens that Merlin and Arthur are interested in flagging all edges
in the graph with small subsets of the nodes. Merlin claims to Arthur,
who also has G, that all its edges can be flagged with a set of k nodes
(where k < |N |, otherwise it is obviously true).

Merlin is convinced of this fact because he actually has such a set N ′.
If Merlin wants to convince Arthur that such a set (i.e., of size k and
flagging all edges) exists without revealing the members of N ′, how can
he do so?

By devising a zero-knowledge proof system, of course. Merlin has seen
some zero-knowledge proof systems for other graph properties and de-
cides to design one in the same vein. It will have the following basic
structure:

Phase 1 Merlin commits to some information about G and his set N ′.

Phase 2 Arthur sends him a random challenge, which could be as
simple as just telling him to do one of two things.

Phase 3 Merlin responds, and Arthur checks some property of the
response and that it matches the previous commitments, then
either accepts or rejects.

The protocol must have the following properties:

Completeness If Merlin is being honest (i.e., he does have such a
set N ′) and both he and Arthur follow the protocol, Arthur will
always accept.

6

Soundness If the claim Merlin is making is false (i.e., there is no set
of size k that flags all edges), then no matter what Merlin does, if
Arthur follows the protocol he will reject with probability at least
ps, where ps is a constant greater than zero.

Zero-knowledge If Merlin follows the protocol, then no matter what
Arthur does, Arthur will not learn anything about Merlin’s solu-
tion (the members of set N ′).

Efficiency All computations required of Arthur are polynomial time.

Merlin begins Phase 1 of the protocol as follows:

Proceeding as in many other zero-knowledge proof systems relating to
graph properties, Merlin first picks a random renaming of the nodes,
that is, a permutation π : N → N . Merlin computes a commitment to
the permutation,2 and sends this commitment to Arthur. Note that he
does not reveal the permutation itself.

Merlin then constructs the adjacency matrix3 corresponding to E

n1 n2 . . . n|N |
n1 0 1 . . . 0
n2 1 0 . . . 1
...

...
...

...
n|N | 0 1 . . . 0

and applies the permutation to rearrange the adjacency matrix (that
is, regenerates the adjacency matrix, but with the columns and rows in
the permuted order):

π(n1) π(n2) . . . π(n|N |)
π(n1) 0 0 . . . 1
π(n2) 0 0 . . . 0
...

...
...

...
π(n|N |) 1 0 . . . 0

2The following is one way he might do this. If sp is a string defining the permutation
(for example, by listing the nodes in the permuted order), then Merlin picks a random
string of bits sr and computes the commitment as c = h(sp||sr), where h is a preimage
resistant hash function. To open this commitment if he later needed to, Merlin would
reveal both the permutation and sr.

3The actual 1’s and 0’s in these two tables are of course only given as examples.

7

He then computes commitments to each individual entry in this ad-
jacency matrix and sends all the commitments to Arthur. Again, he
does not send the values within the adjacency matrix, only the com-
mitments.

At this point, Merlin has committed to a random relabeling of G in a
flexible way that allows him to later reveal any individual parts of the
relabeled graph that he wants.

(a) (13 points)

Design the rest of the protocol. Your solution should include the
following parts.

• The rest of Phase 1, which should consist of one or more
additional commitments that Merlin computes and sends to
Arthur.

• Phase 2, which should consist of Arthur posing a challenge to
Merlin.

• Phase 3, which should specify how Merlin responds to the
challenge and how Arthur checks the response and decides
whether to accept or reject.

Possibly helpful hint: Note that a set N ′ flags all the edges in G
if and only if for all n1, n2 /∈ N ′, (n1, n2) /∈ E.

Answer: In Phase 1, Merlin should commit the permuted version
of his flagging set. That is, if N ′ = {n′1, n′2, . . . n′k}, he should
commit to

{π(n′1), π(n′2), . . . π(n′k)} .

Forming one commitment to the entire set is fine since we will not
need to open commitments to individual members, but commit-
ting to the individual members will work as well. The commitment
should be sent to Arthur with the others.

In Phase 2, Arthur flips a coin. If it comes up heads, Arthur
asks Merlin to reveal the permutation and the entire adjacency
matrix. If it comes up tails, Arthur asks Merlin to reveal his (per-
muted) flagging set and enough entries in the adjacency matrix to
demonstrate its correctness.

In Phase 3, if Arthur asked for the permutation and whole ad-
jacency matrix, then Arthur opens the commitments to the per-
mutation and each entry in the matrix. That is, he sends over

8

the permutation π and the adjacency matrix, along with all the
random values he used in computing their commitments. In this
case, Arthur first checks that these values match the commitments
he received in Phase 1. Next he checks that they do in fact cor-
respond to a valid relabeling of G, that is, that when the original
adjacency matrix for G is rearranged according to π, the new ad-
jacency matrix is obtained. He accepts iff both of these checks are
true.

If Arthur instead asked for the flagging set, then in Phase 3 Mer-
lin will do the following. First, Merlin will open the commitment
to the (permuted) flagging set, revealing {π(n′1), π(n′2), . . . π(n′k)}.
Then, for each entry in the permuted adjacency matrix that cor-
responds to two nodes not in the flagging set, Merlin opens the
commitment to that entry. Arthur then checks that these values
all match the corresponding commitments received in Phase 1,
that the permuted flagging set is of size k, and that all the re-
vealed matrix entries are 0. He accepts iff all these checks are
true.

An equivalent, equally correct scheme would be for Merlin to ini-
tially commit to the (permuted) complement of his flagging set.
That is, if N \N ′ = {n′′1, n′′2, . . . n′′|N |−k}, he would commit to

{π(n′′1), π(n′′2), . . . π(n′′|N |−k)} .

In this case, Arthur would check in Phase 3 that this set is of size
|N |−k. In this alternative solution, the same set of matrix entries
should be revealed, and they should be 0 as before.

(b) (8 points)

Prove that your protocol is sound. That is, assume no N ′ ⊂ N of
size k flags all the edges in G. Then show that no matter what
Merlin does, if Arthur follows the protocol, he will accept with
probability at most ps, where ps is some positive constant.

Answer: If no N ′ ⊂ N of size k flags all the edges in G, then
Arthur will accept with probability at most 1

2
, no matter what

Merlin does. This can be shown as follows.

Now suppose that in Phase 1 Merlin sent over some apparently
valid looking set of commitments.4 Call the commitment to his

4If Merlin sends something that clearly cannot match the protocol, Arthur will accept
with probability 0, so this case is covered.

9

purported relabeled flagging set cN ′ . Now since we are assuming
that no N ′ ⊂ N of size k flags all the edges in G, it is also the
case that in the relabeled graph there is no set of k nodes which
flags all the edges. So either cN ′ is not a commitment to a set
of nodes which flag all the edges in the relabeled graph, or the
purported relabeled graph is not actually a relabeling of G. In
the former case, Arthur will reject whenever he flips tails, which
happens with probability 1

2
. In the latter case, Arthur will reject

whenever he flips heads, which happens with probability 1
2
.

So regardless of what Merlin does, Arthur will accept with prob-
ability at most 1

2
.

(c) (4 points)

Prove that your protocol is zero-knowledge. This need not be
formal, but it should be a convincing explanation of why the mes-
sages Arthur receives from Merlin give him no information about
the members of N ′, provided Merlin follows the protocol (whether
or not Arthur does). Note that revealing the size of N ′ is accept-
able (and required, since that is what is being proven).

Answer: First, note that the commitments themselves reveal noth-
ing to Arthur provided a secure commitment scheme is used. So
we only need to concern ourselves with the commitments that
Merlin opens.

If Arthur flips heads in Phase 2, then Merlin reveals {π(n′1), π(n′2), . . . π(n′k)}
and the appropriate entries of the permuted adjacency matrix.
However, this is nothing but a random k-node subset of N and a
bunch of 0’s, so this should reveal nothing.

If Arthur flips tails in Phase 2, then Merlin reveals π and the entire
permuted adjacency matrix. But this of course is just a relabeling
of G, and was in fact computed independent of N ′. So in this case
also nothing is revealed.

(d) (6 points)

Suppose we replace the graph problem we have discussed so far
with the problem of proving that a graph is two-colorable, that is,
proving that with two available colors, we may assign a color to
each node so that no nodes connected by an edge have the same
color.

As in the previous situation, Merlin has a witness to this fact (in
this case a valid two-coloring) and wants to prove its existence to

10

Arthur without revealing anything more about it.

Is there a protocol for this problem that satisfies the requirements
given for completeness, soundness, zero-knowledge, and efficiency?
If your answer is yes, give one; if your answer is no, explain why
none exist.

Hint: Note that it is easy (polynomial time) to determine whether
a graph is two-colorable and compute a two-coloring if one exists.
Your answer may assume this fact. Using this fact, answering
correctly should only take two or three sentences.

Answer: Yes, such a protocol exists.

Since Arthur can determine on his own whether the graph is two-
colorable, there is actually nothing Merlin can reveal to him that
would violate the zero-knowledge property (as stated in the home-
work errata email). So any protocol where Arthur checks for him-
self whether the graph is two-colorable (and accepts iff it is) is a
valid answer, regardless of what Merlin does. The simplest such
protocol is the one in which Merlin does nothing.

11

