
Homework 3 Solutions
CS161 Computer Security, Spring 2008

1. Authentication and Key Exchange

The Needham-Schroeder protocol has a number of variants; in particular,
the version in Figure 12.3 of the Gollman textbook differs from the one
presented in lecture. As explained in Section 12.3.3, the textbook variant
is vulnerable to a replay attack which tricks B into reusing an old session
key (which may have since been compromised).

(a) (3 points)

Modify this version of the Needham-Schroeder protocol so that it
prevents this attack. You may assume that all three parties have
synchronized clocks, but you must not add any messages to the
protocol. That is, the protocol should still consist of a message
from A to S, S to A, A to B, B to A, and A to B, but the fields in
each message may differ from the original protocol. Express your
answer in the protocol notation of Figure 12.3 and note any checks
conducted by each party after receiving each message.

Answer: The server may add a timestamp t as shown below.

A→ S : A, B, na

S → A : EKas(na, B, Kab, EKbs
(Kab, A, t))

A→ B : EKbs
(Kab, A, t)

B → A : EKab
(nb)

A→ B : EKab
(nb − 1)

After receiving the message EKbs
(Kab, A, t), B should check (in ad-

dition to the checks in the original protocol) that t is within some
small window around the current time and abort the protocol if
not.

1



(b) (5 points)

If synchronized clocks are not available, it is also possible to prevent
this replay attack by adding additional messages to the protocol and
altering the content of other messages. An incomplete version of
such a protocol is given on the following page.

A→ B : A

B → A :

A→ S : A, B, na,

S → A : EKas(na, B, Kab, )

A→ B :

B → A : EKab
(nb)

A→ B : EKab
(nb − 1)

In this version, A and B exchange an initial round of messages
before A contacts S. After that point, the rest of the protocol is very
similar to the version of Needham-Schroeder given in Figure 12.3;
in particular, the last two messages are the same.

Each of the blanks represents one or more fields that have been
omitted. The size of the blanks is not meant to indicate anything
about the content of those fields.

Give values for these omitted fields so that the resulting protocol is
not vulnerable to the replay attack. Try to avoid including anything
beyond what is necessary.

Answer: The purpose of the initial exchange between A and B is to
give B an opportunity to provide a nonce which will demonstrate
the freshness of the key it receives from S. One way to do so is with
the fields given below.

Blank 1: EKbs
(n′

b)
Blank 2: EKbs

(n′
b)

Blank 3: EKbs
(Kab, n

′
b, A)

Blank 4: EKbs
(Kab, n

′
b, A)

2. More Authentication and Key Exchange

Consider the following protocol, which is an alternative to Needham-
Schroeder.

2



A→ B : na, A,B,EKas(n
′
a, na, A,B)

B → S : na, A,B,EKas(n
′
a, na, A,B), EKbs

(na, A,B, nb)

S → B : na, EKas(n
′
a, Kab), EKbs

(nb, Kab)

B → A : na, EKas(n
′
a, Kab)

In the above, na and n′
a are nonces selected by A and nb is a nonce

selected by B.

(a) (2 points)

Do you think this protocol is vulnerable to the same attack as the
Needham-Schroeder protocol? That is, is it possible to replay mes-
sages in order to cause A or B to reuse an old session key? Briefly
explain why you think it is or is not vulnerable to such an attack.

Answer: No, it is not vulnerable to the same attack. The message
from which A obtains the session key (EKas(n

′
a, Kab)) contains a

nonce n′
a from A and will be rejected if A did not just select that

value. Likewise, the message EKbs
(nb, Kab) contains the nonce nb

from B and will be rejected if it is not fresh.

(b) (7 points)

In any case, that protocol is vulnerable to a less severe attack.
Specifically, it is possible for an adversary to trick A and B into
establishing a session with keys that do not match. That is, A will
subsequently attempt to communicate with B using some session
key Kab while B will being using some key K ′

ab 6= Kab.

Show how this can be done. Assume the attacker can intercept mes-
sages and alter, drop, or replay them, but assume that the attacker
has not compromised any session keys or any of the long term keys
A and B share with S.

Answer: The attacker waits until the first three messages have
been received, at which point B will have received the session key
Kab and will send the fourth message. The attacker intercepts
and drops that fourth message, then replays the second message
(A, B, EKas(n

′
a, na, A,B), EKbs

(na, A,B, nb)) to the server. This causes
the server to generate a new session key K ′

ab and reply to the at-
tacker with na, EKas(n

′
a, K

′
ab), EKbs

(nb, K
′
ab). The attacker may now

send na, EKas(n
′
a, K

′
ab) to A, causing A and B to carry on from this

point using different session keys.

3



3. Generating Random Values

In order to generate a cryptographic key or a seed for a pseudorandom
number generator, it is necessary to collect some (truly) random data.
Common sources of random data on a system include a high resolution
(e.g., nanosecond) clock, latencies between disk seeks, delays between
keystrokes or mouse movements, etc.

All of these sources contain some amount of truly unpredictable infor-
mation, but they are in general not sources of uniform, uncorrelated
bits. In order to obtain uniformly distributed random values from such
sources, the common practice is to pass them through a cryptographic
hash function. However, it is possible to condition random data through
simpler methods.

Suppose you wish to generate some number of bits, each of which should
be 0 or 1 with equal probability, independent of the other bits. You have
a biased coin which turns up tails (0) with some unknown probability p,
where 0 < p < 1, and turns up heads (1) with probability 1−p. However,
you do not have a computer with which to compute a hash function. In
this scenario, the following simple algorithm can be used.

1. Flip the coin twice.

2. If the outcome is tails, then heads, write down a 0. If the outcome is
heads, then tails, write down a 1. Otherwise, do not write anything.

3. Repeat from Step 1 until the required number of bits has been
generated.

If we view the coin flips as generating a string of input bits, this algorithm
can be viewed as passing over the string two bits at a time, applying the
following transformation.

“00”→ “ ”

“01”→ “0”

“10”→ “1”

“11”→ “ ”

For example, the input string

“10 00 00 01 01 10 01 10 00 00 01 00 10”

would be translated to

4



“1 0 0 1 0 1 0 1”.

Regardless of the value of p, each output bit is equally likely to be 0 or 1
because the pair of input bits “01” has the same probability of occurring
as the pair “10”. Furthermore, the probability of each output bit being
0 or 1 will be independent of the other output bits.

(a) (3 points)

Using this method, if the number of input bits is ` (which may be
assumed to be even) and the probability of each input bit being 0
is p, what is the expected number of output bits generated?

Answer: `p(1− p)

(b) (8 points)

Design a more efficient scheme, that is, one which provides a higher
expected ratio of output bits to input bits.

Like the one above, your scheme should take the form of a mapping
from groups of input bits to groups of output bits, and you should
specify it in this form.

Each of the output bits produced by your scheme should be 0 or 1
with equal probability, independent of the other output bits. For
any value of p such that 0 < p < 1, your scheme should produce
more output bits on average than the given scheme.

Answer: One way to devise an improved scheme is to take larger
groups of input bits at a time. Note that any set of input strings
which each have the same number of 0’s and 1’s will all occur with
equal probability. So an easy way to ensure that the output bits will
be uniform and independent is to group the input strings by how
many 1’s and 0’s they have, and assign output strings accordingly.

The following page gives the mapping for a scheme designed in this
way. The rows have been rearranged to make the idea behind the
scheme more clear.

5



“0001”→ “00”

“0010”→ “01”

“0100”→ “10”

“1000”→ “11”

“0111”→ “00”

“1011”→ “01”

“1101”→ “10”

“1110”→ “11”

“0011”→ “00”

“0101”→ “01”

“0110”→ “10”

“1001”→ “11”

“1010”→ “0”

“1100”→ “1”

“0000”→ “ ”

“1111”→ “ ”

To see why this works, note that the first four input strings listed
each have exactly one 1 and thus occur with equal probability.
These are mapped to “00”, “01”, “10”, and “11”. Likewise, the
four input strings after those occur with equal probability and have
the same mapping. The four input strings listed after those each
have two 0’s and two 1’s and again are given the same mapping.
The remaining two possible input strings with two 0’s and two 1’s
are mapped to “0” and “1”, and, finally, the all 0’s and all 1’s strings
are mapped to the zero length string.

(c) (4 points)

If the number of inputs bits is ` and the probability of each bit
being 0 is p, what is the expected number of bits generated by your
new scheme?

Answer: The expected number of bits generated from a single group
of four input bits is

4 · 2p3(1− p) + 4 · 2p(1− p)3 + 4 · 2p2(1− p)2 + 2p2(1− p)2

= −6p4 + 12p3 − 14p2 + 8p

6



So the overall expected number of bits is⌊
`

4

⌋
(−6p4 + 12p3 − 14p2 + 8p) .

7


