
Homework 4
CS161 Computer Security, Spring 2008

Assigned 4/14/08
Due 4/21/08

NOTE: Questions 1-3 are based on real-world systems, and present a
fair amount of background material. Although the question statements are
long, you should be able to answer them in a few sentences. Question 5 is
a programming assignment with a short answer question. Please submit the
code for number 5 electronically. The rest of the assignment should be handed
in at the beginning of class as usual.

1. TOCTTOU

You’re working on a revolutionary online social networking game for
GRizzly Unix Experts and treasure hunters. The game environment
consists of an 8x8 map, which contains gold, hunters, grues and walls.
Gold can be used to personalize the game environment by erecting or
destroying walls between squares. When two players occupy the same
square, the system lets the two players chat with each other.

(a) (2 points)

You’ve decided to jump on the casual gaming bandwagon. Early
user studies have found that casual gamers get frustrated when
their characters bump into newly created walls. Also, none of them
ever wants to initiate conversations with GRUEs, and would rather
have their clients automatically avoid walking into squares occupied
by GRUEs (preventing GRUEs from walking into a square that
contains a hunter would be antisocial, so you don’t need to prevent
that).

A beta version of hunt added a few extra functions to the client-
server API in order to achieve these goals:

• bool isThereAWallInFrontOfMe()



• bool isThereAGrueInFrontOfMe()

Coupled with the existing API:

• faceNorth()

• faceSouth()

• faceEast()

• faceWest()

• moveForward()

• pickUpGold()

• putDownGold()

• buildWall()

these functions initially prevented any hunter-initiated GRUE con-
tact on your network. However, within minutes, the GRUE’s used
their experience with TOCTTOU bugs in the UNIX filesystem API
to circumvent the solution.

Extend the API with locks to remove any race conditions while
preserving as much concurrency as possible. Be sure to tell us
which clients are prevented from taking action by a lock, and which
actions the lock(s) prevent.

This sort of lock is like a mandatory file lock; not like a mutex in a
multithreaded program. Clients must manually acquire locks if they
wish to prevent the action the lock protects against. Furthermore,
once a lock is granted, actions that the lock prevents are guaranteed
not to occur until the lock is released.

(b) (3 points)

Soon after locking is deployed, the online game grinds to a complete
halt; apparently the GRUEs have decided not to release the locks
you added in part (a). Provide a new API with the same atomicity
guarantees (and functionality) as before, but do not allow client
programs to acquire locks.

(c) (5 points)

With your changes, the game becomes a wild success! As the 256th
player signs up, you realize the 8x8 map is too small to accommo-
date future growth. You expand the map to cover a 256x256 grid,
but divide it into 8x8 tiles. When a user moves from one tile to
another, their session is moved onto the server that owns the new
tile.



Rather than allocating an entire server to each tile, you keep the
contents of unoccupied tiles in files on a file server. If a user moves
into an unoccupied tile, the server reads the file from disk, and
decides that it owns the tile.

Once a second, each server broadcasts the list of tiles that it owns to
the other servers. If two servers both think they own the same tile,
one server transfers the appropriate user state to the other server,
and deletes its version of the tile.

You login to the game the next morning, and discover that a pair of
treasure hunters are doubling their money every few seconds. They
already have more gold than the game world is supposed to contain!

How can a pair of players cheat and double their gold?

(d) (5 points)

A concerned GRUE suggests that you use conflict resolution to fix
the gold doubling bug. The idea is to remember what actions each
player takes in each copy of the tile, and then to automaticlaly fix
problems after they occur.

How long do the servers have to track such information? What
should they check for? What should they do if they discover a
problem?

2. Serialization

Java has a number of built-in data encapsulation / protection features.
In this question you will learn how to use serialization to circumvent
them. Consider the following class:

class Tree {
private Tree left; private Tree right;

private int value;

public Integer search(int i) {
if(i == value) {

return i;

} else if(i < value) {
if(left)

return left.search(i);

else

return NULL;

} else {
if(right)



return right.search(i);

else

return NULL;

}
}
public Integer insert(int i) {

...

}
}

Tree’s constructors produce valid trees, and insert() maintains the proper
invariants. Java’s runtime prevents other classes from modifying Tree’s
private state. Therefore, one might assume that all instances of Tree are
valid binary search trees.

(a) (5 points)

Assume the Tree class has been modified to support a custom seri-
alization and deserialization format. The file format is text based,
and looks like this:

// Declare objects

Tree a; // Reference to first object is

// returned by deserialization

Tree b;

Tree c;

Tree d;

// Fill in object fields

b = { NULL, NULL, 1 }; // { left, right, value }
a = { b, c, 2 };
d = { NULL, NULL, 3 };
c = { d, NULL, 4 };

Produce a file that will cause search() to crash. Your file should
only contain Tree objects, just like the example. The set of objects
returned by deserialization should type check; all Tree fields should
point to Tree objects or be NULL, and all integer fields should
contain integers.

(b) (5 points)

Modify the serialization format to prevent your attack.



3. ObjectInputStream

Read the documentation for Java 1.5’s ObjectInputStream:

http://java.sun.com/j2se/1.5.0/docs/api/

java/io/ObjectInputStream.html

(a) (5 points)

Assume that an attacker is able to install a malicious java class on
a server, but is not able to invoke methods from the class directly.

However, the server uses ObjectInputStream to read data from
unauthenticated network connections.

Use this fact to gain complete control over the server’s JVM. De-
scribe your malicious class (include relevant method names, when
appropriate), and explain how you would generate input for Ob-
jectInputStream that would trigger the vulnerability.

(b) (5 points)

You’ve decided to implement a secure version of ObjectInputStream
by overriding resolveClass(), which takes a class descriptor (read
from the input stream), and returns the local version of the class.
The idea is to throw an exception instead of letting potentially ma-
licious code execute. Explain how your version of resolveClass()
will work.



4. Reasoning about code (15 points)

The following (poorly written) function ROT-13 encodes and prints the
string passed into it. Prove its correctness using preconditions, postcon-
ditions and loop invariants.

Note that the program is not memory safe, and does not behave correctly
on all inputs. Therefore, you will need to choose preconditions on the
input in order to make your proof go through. Similarly, you should
document any side-effects of the function using postconditions.

You will also need to document the preconditions and postconditions of
library functions.

void printRot13(char * c) {
c = strdup(c);

if(!c) { abort(); }
size t i = strlen(c) + 1;

c+=i;

while(i--) {
c--;

if(*c >= ’A’ && *c <= ’Z’) {
*c = ’A’ + (*c-’A’+13) % 26;

}
}
printf(c);

free(c);

}

5. Buffer overflow exploit (25 points)

For this problem, you will write an exploit for a buffer overflow vulner-
ability. To get started, read over Aleph One’s “Smashing the Stack for
Fun and Profit”.1 (You don’t have to read the section “Shell Code”,
since we provide you with shellcode, though you may find it interesting.)

The vulnerable program is /home/ff/cs161/hw4-s08/targets/target
on the instructional machines. Copy the directory /home/ff/cs161/hw4-s08/exploits

to your working space; it contains skeleton code and a Makefile for your
exploit program.

Your task is to edit exploit.c so that it exploits the buffer overflow
vulnerability in target to run a shell. We provide exploit code in

1http://reactor-core.org/stack-smashing.html



shellcode.h; you just have to cause it to be executed in target. If
you are successful, you should see a ‘$’ shell prompt:

bash-3.1$ ./exploit

$

The only file you should edit is exploit.c. Build it with gmake. The
path to target is hard-coded in exploit.c; please do not change it.

Because buffer overflow exploits are highly machine-dependent, you are
restricted to working on sphere.cs, rhombus.cs, or pentagon.cs. Your
exploit must work on one of those machines (they are Solaris x86 boxes).

To start with, we recommend that you use gdb to explore the stack and
memory layout of target. It will be different when called via execve(),
so here is the best way to get set up (after running gdb exploit):

(gdb) run

Starting program: /home/ff/cs161/hw4/exploit/exploit

Program received signal SIGTRAP, Trace/breakpoint trap.

0xce7cd062 in ?? ()

(gdb) symbol-file /home/ff/cs161/hw4-s08/targets/target

Load new symbol table from "/home/ff/cs161/hw4-s08/targets/target"? (y or n) y

Reading symbols from /home/ff/cs161/hw4-s08/targets/target...done.

warning: rw_common (): unable to read at addr 0xce7ac660

warning: sol_thread_new_objfile: td_ta_new: Debugger service failed

(gdb) break main

Breakpoint 1 at 0x80507d7: file target.c, line 12.

(gdb) continue

Continuing.

Breakpoint 1, main (argc=2, argv=0x8047f34) at target.c:12

12 if (argc != 2) {

(gdb)

Running it this way makes it difficult to restart, however, so you may
want to just run gdb target to explore initially and then switch to the
execve() version when it’s time to find the actual addresses for your
exploit.



You will want to become familiar with the following gdb commands (use
the ’help’ command): break, where, disassemble, next, nexti, x, and
info. Be sure to explore the display options for the x command.

You should not follow Aleph One’s directions too closely. You may or
may not want to execute the shellcode on the stack, and you can use
gdb to figure out the exact address to jump to, so you don’t have to use
anything like get_sp() or NOP padding.

You must submit your code electronically. Go to the directory where
exploit.c resides and type submit hw4. You should only submit ex-
ploit.c; you should not change the other files.

You must ensure that your code runs on one of the three servers listed
above. We should be able to type gmake and then ./exploit to run
your exploit.

You should include in your homework writeup a brief description of how
you tackled this problem, including how you determined which address
to jump to. Please tell us which server you ran your code on (sphere,
rhombus, or pentagon). The writeup for this question should be no more
than 6 sentences.

Do not forget to list students you worked with for this homework. As
always, you may discuss problems with other students but you may not
share writing (including code).


